Interleukin 11 (IL-11), a member of the IL-6 family of cytokines, has roles in haematopoiesis, inflammation, bone metabolism, and craniofacial development. IL-11 also has pathological roles in chronic inflammatory diseases, fibrosis, and cancer. In this structural snapshot, we explore our recently published cryo-EM structure of the human IL-11 signalling complex to understand the molecular mechanisms of complex formation and disease-associated mutations.
View Article and Find Full Text PDFFor healthspan and lifespan, ERK, AMPK and mTORC1 represent critical pathways and inflammation is a centrally important hallmark. Here we examined whether IL-11, a pro-inflammatory cytokine of the IL-6 family, has a negative effect on age-associated disease and lifespan. As mice age, IL-11 is upregulated across cell types and tissues to regulate an ERK-AMPK-mTORC1 axis to modulate cellular, tissue- and organismal-level ageing pathologies.
View Article and Find Full Text PDFJ Bone Miner Res
September 2024
Intracellular phosphoinositide 3-kinase (PI3K) signaling is activated by multiple bone-active receptors. Genetic mutations activating PI3K signaling are associated with clinical syndromes of tissue overgrowth in multiple organs, often including the skeleton. While one formation is increased by removing the PI3K inhibitor (phosphatase and TENsin homolog deleted on chromosome 10 (PTEN)), the effect of direct PI3K activation in the osteoblast lineage has not been reported.
View Article and Find Full Text PDFGermline epigenetic programming, including genomic imprinting, substantially influences offspring development. Polycomb Repressive Complex 2 (PRC2) plays an important role in Histone 3 Lysine 27 trimethylation (H3K27me3)-dependent imprinting, loss of which leads to growth and developmental changes in mouse offspring. In this study, we show that offspring from mouse oocytes lacking the PRC2 protein Embryonic Ectoderm Development (EED) were initially developmentally delayed, characterised by low blastocyst cell counts and substantial growth delay in mid-gestation embryos.
View Article and Find Full Text PDFAblation of Cyp27b1 eliminates calcitriol but does not disturb fetal mineral homeostasis or skeletal development. However, independent of fetal genotypes, maternal loss of Cyp27b1 altered fetal mineral and hormonal levels compared to offspring of WT dams. We hypothesized that these maternal influences would alter postnatal skeletal development.
View Article and Find Full Text PDFA 24-year-old female patient was diagnosed with osteoporosis after presenting with numerous fractures throughout her childhood and adolescence. Risk factors included chronic constipation, severe vitamin D deficiency, and long-term high-dose steroid use for severe eczema. Metabolic bone disorder clinical exome screening (limited panel of metabolic bone disorders and gastrointestinal disorders) was undertaken and revealed a class 4 likely pathogenic variant in the gene known to cause osteoporosis.
View Article and Find Full Text PDFSkull growth involves the expansion of both the flat calvarial bones of the skull and the fibrous marginal zones, termed sutures, between them. This process depends on co-ordinated proliferation of mesenchymal-derived progenitor cells within the sutures, and their differentiation to osteoblasts which produce the bone matrix required to expand the size of the bony plates. Defects lead to premature closure of these sutures, termed craniosynostosis, resulting in heterogeneous head shape differences due to restricted growth of one or more sutures.
View Article and Find Full Text PDFPreclinical models (typically ovariectomized rats and genetically altered mice) have underpinned much of what we know about skeletal biology. They have been pivotal for developing therapies for osteoporosis and monogenic skeletal conditions, including osteogenesis imperfecta, achondroplasia, hypophosphatasia, and craniodysplasias. Further therapeutic advances, particularly to improve cortical strength, require improved understanding and more rigorous use and reporting.
View Article and Find Full Text PDFCurr Osteoporos Rep
February 2024
Purpose Of The Review: The bone and hematopoietic tissues coemerge during development and are functionally intertwined throughout mammalian life. Oncostatin M (OSM) is an inflammatory cytokine of the interleukin-6 family produced by osteoblasts, bone marrow macrophages, and neutrophils. OSM acts via two heterodimeric receptors comprising GP130 with either an OSM receptor (OSMR) or a leukemia inhibitory factor receptor (LIFR).
View Article and Find Full Text PDFDuchenne muscular dystrophy (DMD) is a severe muscle wasting disease caused by mutations or deletions in the dystrophin gene, for which there remains no cure. As DMD patients also develop bone fragility because of muscle weakness and immobilization, better understanding of the pathophysiological mechanisms of dystrophin deficiency will help develop therapies to improve musculoskeletal health. Since alterations in muscle phenotype can influence bone structure, we investigated whether modifying muscle contractile activity through low-frequency stimulation (LFS) could alter bone architecture in mouse models of DMD.
View Article and Find Full Text PDFDespite knowledge that sexually dimorphic mechanisms regulate bone homeostasis, sex often remains unreported and unconsidered in preclinical experimental design. Failure to report sex could lead to inappropriate generalizations of research findings and less effective translation into clinical practice. Preclinical sex bias (preferential selection of one sex) is present across other fields, including neuroscience and immunology, but remains uninvestigated in skeletal research.
View Article and Find Full Text PDFJ Bone Miner Res
December 2022
Recovery from lactation-induced bone loss appears to be calcitriol-independent, since mice lacking 1-alpha-hydroxylase or vitamin D receptor (VDR) exhibit full skeletal recovery. However, in those studies mice consumed a calcium-, phosphorus-, and lactose-enriched "rescue" diet. Here we assessed whether postweaning skeletal recovery of Vdr null mice required that rescue diet.
View Article and Find Full Text PDFWhile it is well-established that bone responds dynamically to mechanical loading, the effects of mild traumatic brain injury (mTBI) on cranial bone composition are unclear. We hypothesized that repeated mTBI (rmTBI) would change the microstructure of cranial bones, without gross skull fractures. To address this, young adult female Piebald Viral Glaxo rats received sham, 1×, 2× or 3× closed-head mTBIs delivered at 24 h intervals, using a weight-drop device custom-built for reproducible impact.
View Article and Find Full Text PDFBone strength is partially determined during cortical bone consolidation, a process comprising coalescence of peripheral trabecular bone and its progressive mineralisation. Mice with genetic deletion of suppressor of cytokine signalling 3 (Socs3), an inhibitor of STAT3 signalling, exhibit delayed cortical bone consolidation, indicated by high cortical porosity, low mineral content, and low bone strength. Since leptin receptor (LepR) is expressed in the osteoblast lineage and is suppressed by SOCS3, we evaluated whether LepR deletion in osteocytes would rectify the Dmp1cre.
View Article and Find Full Text PDFBone strength is determined by the structure and composition of its thickened outer shell (cortical bone), yet the mechanisms controlling cortical consolidation are poorly understood. Cortical bone maturation depends on SOCS3-mediated suppression of IL-6 cytokine-induced STAT3 phosphorylation in osteocytes, the cellular network embedded in bone matrix. Because SOCS3 also suppresses granulocyte-colony-stimulating factor receptor (G-CSFR) signaling, we here tested whether global G-CSFR (Csf3r) ablation altereed bone structure in male and female mice lacking SOCS3 in osteocytes, (Dmp1 :Socs3 mice).
View Article and Find Full Text PDFThe inherited brittle bone disease osteogenesis imperfecta (OI) is commonly caused by COL1A1 and COL1A2 mutations that disrupt the collagen I triple helix. This causes intracellular endoplasmic reticulum (ER) retention of the misfolded collagen and can result in a pathological ER stress response. A therapeutic approach to reduce this toxic mutant load could be to stimulate mutant collagen degradation by manipulating autophagy and/or ER-associated degradation.
View Article and Find Full Text PDFCortical bone develops and changes in response to mechanical load, which is sensed by bone-embedded osteocytes. The bone formation response to load depends on STAT3 intracellular signals, which are upregulated after loading and are subject to negative feedback from Suppressor of Cytokine Signaling 3 (Socs3). Mice with Dmp1Cre-targeted knockout of Socs3 have elevated STAT3 signaling in osteocytes and display delayed cortical bone maturation characterized by impaired accrual of high-density lamellar bone.
View Article and Find Full Text PDFCurr Osteoporos Rep
December 2021
Purpose Of The Review: Osteocytes are cells embedded within the bone matrix, but their function and specific patterns of gene expression remain only partially defined; this is beginning to change with recent studies using transcriptomics. This unbiased approach can generate large amounts of data and is now being used to identify novel genes and signalling pathways within osteocytes both at baseline conditions and in response to stimuli. This review outlines the methods used to isolate cell populations containing osteocytes, and key recent transcriptomic studies that used osteocyte-containing preparations from bone tissue.
View Article and Find Full Text PDFWe show that pro-inflammatory oncostatin M (OSM) is an important regulator of hematopoietic stem cell (HSC) niches in the bone marrow (BM). Treatment of healthy humans and mice with granulocyte colony-stimulating factor (G-CSF) dramatically increases OSM release in blood and BM. Using mice null for the OSM receptor (OSMR) gene, we demonstrate that OSM provides a negative feed-back acting as a brake on HSPC mobilization in response to clinically relevant mobilizing molecules G-CSF and CXCR4 antagonist.
View Article and Find Full Text PDF