Publications by authors named "Natalie A Fokina"

We report on using the synthetic aminoadamantane-CH-aryl derivatives - as sensitive probes for blocking M2 S31N and influenza A virus (IAV) M2 wild-type (WT) channels as well as virus replication in cell culture. The binding kinetics measured using electrophysiology (EP) for M2 S31N channel are very dependent on the length between the adamantane moiety and the first ring of the aryl headgroup realized in and and the girth and length of the adamantane adduct realized in and . Study of - shows that, according to molecular dynamics (MD) simulations and molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) calculations, all bind in the M2 S31N channel with the adamantyl group positioned between V27 and G34 and the aryl group projecting out of the channel with the phenyl (or isoxazole in ) embedded in the V27 cluster.

View Article and Find Full Text PDF

Single chains of metal atoms are expected to be perfect one-dimensional nanowires in nanotechnology, due to their quantum nature including tunable electronic or spin coupling strengths. However, it is still rather difficult to fabricate such nanowires with metallic atoms under directional and separation control. Here, we succeeded in building higher-order single diamondoid-chains from the lower-order chains using a chemically well-controlled approach that employs diamondoids on metal surfaces.

View Article and Find Full Text PDF

1,6-Bis(hydroxymethyl)diamantane spontaneously aligns inside double-walled carbon nanotubes. The encapsulated molecules form a one-dimensional network within the double-walled carbon nanotubes through hydrogen bonding that leads to a highly dense filling as compared to unfunctionalized diamantane. Improving the encapsulation yields of precursors via functionalization is crucial to prepare novel one-dimensional materials.

View Article and Find Full Text PDF

We report the inclusion of carboxy- and amine-substituted molecular nanodiamonds (NDs) adamantane, diamantane, and triamantane by β-cyclodextrin and γ-cyclodextrin (β-CD and γ-CD), which have particularly well-suited hydrophobicity and symmetry for an optimal fit of the host and guest molecules. We studied the host-guest interactions in detail and generally observed 1:1 association of the NDs with the larger γ-CD cavity, but observed 1:2 association for the largest ND in the series (triamantane) with β-CD. We found higher binding affinities for carboxy-substituted NDs than for amine-substituted NDs.

View Article and Find Full Text PDF

A simple method for the synthesis of linear-chain diamond-like nanomaterials, so-called diamantane polymers, is described. This synthetic approach is primarily based on a template reaction of dihalogen-substituted diamantane precursors in the hollow cavities of carbon nanotubes. Under high vacuum and in the presence of Fe nanocatalyst particles, the dehalogenated radical intermediates spontaneously form linear polymer chains within the carbon nanotubes.

View Article and Find Full Text PDF

We present an effective sequence for the preparation of phosphonic acid derivatives of the diamondoids diamantane, triamantane, [121]tetramantane, and [1(2,3)4]pentamantane. The reactions of the corresponding diamondoid hydroxy derivatives with PCl3 in sulfuric or trifluoroacetic acid give mono- as well as didichlorophosphorylated diamondoids in high preparative yields.

View Article and Find Full Text PDF

We investigated the changes in electronic structures induced by chemical functionalization of the five smallest diamondoids using valence photoelectron spectroscopy. Through the variation of three parameters, namely functional group (thiol, hydroxy, and amino), host cluster size (adamantane, diamantane, triamantane, [121]tetramantane, and [1(2,3)4]pentamantane), and functionalization site (apical and medial) we are able to determine to what degree these affect the electronic structures of the overall systems. We show that unlike, for example, in the case of halobenzenes, the ionization potential does not show a linear dependence on the electronegativity of the functional group.

View Article and Find Full Text PDF

Various functional groups have been incorporated into the structures of the naturally occurring diamondoids [1(2)3]tetramantane and [12312]hexamantane (cyclohexamantane), which represent hydrogen-terminated prism-shaped nanodiamonds. The selectivities of the C-H substitutions in [1(2)3]tetramantane depend on the reagent employed and give products substituted at either central (through bromination) or peripheral (through nitroxylation and photo-oxidation) positions. The hydrogen-coupled electron-transfer mechanism of C-H nitroxylation with the model electrophile NO(2)(+).

View Article and Find Full Text PDF

The transformations of apical mono- and bisacetyl diamondoids to the respective oxetanes and subsequent acid-catalyzed ring opening/dehydration lead to diamondoidyl mono- and bis-1,3-dienes in high preparative yields.

View Article and Find Full Text PDF

To model the chemical properties of the hydrogen-terminated nanodiamond {111} and {110} surfaces, the functionalizations of the higher diamondoid [1(2,3)4]pentamantane were studied. [1(2,3)4]Pentamantane reacts selectively with neat bromine to give the medial 2-mono- and 2,4-disubstitution products. In contrast, oxidation with nitric acid as well as single-electron-transfer oxidation involving the [1(2,3)4]pentamantane radical cation results in apical C7-substitutions.

View Article and Find Full Text PDF

The selective functionalizations of the fundamental hydrogen-terminated nanodiamonds triamantane 1, as well as the most symmetrical representative of the tetramantanes (C(2h)-[121]tetramantane 2) were elaborated. Electrophilic reagents (Br2, HNO3) predominantly attack the medial C-H positions of the cages; bromination of 2 gave the medial 2-bromo derivative almost exclusively. Highly selective apical substitution in 1 and 2 is possible either under single-electron-transfer oxidations via hydrocarbon radical cations or through photoacetylation with diacetyl.

View Article and Find Full Text PDF

[reaction: see text] Treatment of acyclic as well as polycyclic tertiary mono- and dihydroxy hydrocarbon derivatives with thiourea in the presence of hydrobromic and acetic acid represents a convenient one-step route to the respective tertiary thiols and dithiols. This procedure was used for the preparation of diamondoid thiols of diamantane, triamantane, [121]tetramantane, and others that are prospective nanoelectronic materials.

View Article and Find Full Text PDF