Publications by authors named "Natalia Zolotareva"

The reaction of PCl with diethyl ketazine and 4-phenylcyclohexanone azine results in the formation of 1,4-dichloro-3a,6a-diaza-1,4-diphosphapentalenes which were reduced by magnesium in THF to give corresponding diazadiphosphapentalenes EtMeDDP and PhcHexDDP, containing two-coordinate phosphorus atoms. According to the CVA data, the new diazadiphosphapentalenes are strong electron donors showing oxidation peak potentials at 0.34 and 0.

View Article and Find Full Text PDF

Treatment of 3a,6a-diaza-1,4-diphosphapentalene (DDP) with an excess of PhBCl2 yields the corresponding bis(borane) adduct DDP(PhBCl2)2 (14), demonstrating the availability of two lone pairs on the phosphorus center. The reaction between DDP and B(C6F5)3 yields (1 : 1) phosphino-borane complex 16. The free lone electron pair on the pyramidal P atom in 16 participates in the intramolecular non-covalent interactions P(1)F(1) and P(1)F(6) giving additional 3.

View Article and Find Full Text PDF

Herein, we present the synthesis, single-crystal X-ray structures, and spectroscopic properties for the 1:1 donor-acceptor complexes of 1,2,4,5-tetracyanobenzene (TCNB) with annelated 3a,6a-diaza-1,4-diphosphapentalenes (DDPs) based on cyclohexanone azine () and tetralone azine (). These are the first complexes of an organic π-acceptor with donor phosphorus heterocycles. According to the X-ray study, the DDPs and TCNB molecules are alternately stacked with interplanar distances of 3.

View Article and Find Full Text PDF

The interaction of azobenzene with lithium dicyclohexylamide (Cy2NLi) in THF or Et2O afforded the ion-radical salt of azobenzene (1) structurally characterized for the first time and dicyclohexylaminyl radical, which begins a novel chain of transformations leading eventually to the imino-enamido lithium complex (3). Benzalaniline, being a relative of azobenzene, reacted with Cy2NLi without electron transfer by a proton-abstraction mechanism to form the dilithium salt of N(1),N(2),1,2-tetraphenylethene-1,2-diamine quantitatively.

View Article and Find Full Text PDF