In recent years, epigenetic mechanisms have been implicated in the development of multifactorial diseases including neurodegenerative disorders. In Parkinson's disease (PD), as a synucleinopathy, most studies focused on DNA methylation of gene coding alpha-synuclein but obtained results were rather contradictory. In another neurodegenerative synucleinopathy, multiple system atrophy (MSA), very few studies investigated the epigenetic regulation.
View Article and Find Full Text PDFHuntington's disease (HD) is a hereditary autosomal dominant neurodegenerative disease caused by the polyglutamine stretch expansion in the huntingtin (HTT) protein. In HD, dysregulation of multiple cellular processes occurs, resulting in the death of medium spiny neurons of striatum. A line of induced pluripotent stem cells (iPSCs) ICGi033-A was obtained from peripheral blood mononuclear cells of a patient carrying 77 CAG repeats in the HTT gene.
View Article and Find Full Text PDFPurpose/aim Of The Study: To analyze contribution of rs3842225 and rs1182 single nucleotide polymorphisms (SNP) in TOR1A gene, the causative gene for the DYT1 form of hereditary early-onset generalized dystonia, to the development of focal and segmental dystonia in Russian patients.
Materials And Methods: We analyzed associations between rs3842225 and rs1182 polymorphisms in TOR1A and focal/segmental dystonia in 254 patients from Russian population, including 218 Slavic patients and 36 patients of mixed ethnic background.
Results: Stratification of patients based on age at the disease onset (≤ 30 years and > 30 years) showed statistically significant prevalence of the del-allele at the rs3842225 locus in Slavic patients with earlier age of onset of dystonia (36.