Publications by authors named "Natalia Vydra"

Background: Transforming growth factor beta (TGFβ) is important for the morphogenesis and secretory function of the mammary gland. It is one of the main activators of the epithelial-mesenchymal transition (EMT), a process important for tissue remodeling and regeneration. It also provides cells with the plasticity to form metastases during tumor progression.

View Article and Find Full Text PDF

The Hypoxia-Inducible Factor 1 (HIF-1) is essential for cellular adaptation to reduced oxygen levels. It also facilitates the maintenance and re-establishment of skin homeostasis. Among others, it is involved in regulating keratinocyte differentiation.

View Article and Find Full Text PDF

HSF1 is a well-known heat shock protein expression regulator in response to stress. It also regulates processes important for growth, development or tumorigenesis. We studied the HSF1 influence on the phenotype of non-tumorigenic human mammary epithelial (MCF10A and MCF12A) and several triple-negative breast cancer cell lines.

View Article and Find Full Text PDF

Background: Implementation of anal squamous cell carcinoma (ASCC) treatment modifications requires reliable patient risk stratification. The circulating tumor-related human papillomavirus type 16 (ctHPV16) may play a role in predicting survival or assessing treatment response.

Methods: The study included 62 ASCC patients treated with chemoradiotherapy.

View Article and Find Full Text PDF

Heat Shock Factor 1 (HSF1), a transcription factor frequently overexpressed in cancer, is activated by proteotoxic agents and participates in the regulation of cellular stress response. To investigate how HSF1 level affects the response to proteotoxic stress, we integrated data from functional genomics analyses performed in MCF7 breast adenocarcinoma cells. Although the general transcriptional response to heat shock was impaired due to HSF1 deficiency (mainly chaperone expression was inhibited), a set of genes was identified, including and certain and family members, whose stress-induced activation was stronger and persisted longer than in cells with normal HSF1 levels.

View Article and Find Full Text PDF

Heat shock factor 1 (HSF1), a key regulator of transcriptional responses to proteotoxic stress, was linked to estrogen (E2) signaling through estrogen receptor α (ERα). We found that an HSF1 deficiency may decrease ERα level, attenuate the mitogenic action of E2, counteract E2-stimulated cell scattering, and reduce adhesion to collagens and cell motility in ER-positive breast cancer cells. The stimulatory effect of E2 on the transcriptome is largely weaker in HSF1-deficient cells, in part due to the higher basal expression of E2-dependent genes, which correlates with the enhanced binding of unliganded ERα to chromatin in such cells.

View Article and Find Full Text PDF

Manumycin A (MA) is a well-tolerated natural antibiotic showing pleiotropic anticancer effects in various preclinical in vitro and in vivo models. Anticancer drugs may themselves act as stressors to induce the cellular adaptive mechanism that can minimize their cytotoxicity. Heat shock proteins (HSPs) as cytoprotective factors can counteract the deleterious effects of various stressful stimuli.

View Article and Find Full Text PDF

The mouse 3110001I22Rik gene located in the first intron of Bfar is considered as a Bfar variant coding for the BFARv3 protein. However, it differs from other BFAR isoforms and resembles periphilin 1 (PPHLN1) due to its two (Lge1 and serine-rich) conserved domains. We identified the BFARv3/EGFP-interacting proteins by co-immunoprecipitation coupled to mass spectrometry, which revealed 40S ribosomal proteins (RPS3, RPS14, RPS19, RPS25, RPS27), histones (H1.

View Article and Find Full Text PDF

Heat shock can induce either cytoprotective mechanisms or cell death. We found that in certain human and mouse cells, including spermatocytes, activated heat shock factor 1 (HSF1) binds to sequences located in the intron(s) of the PMAIP1 (NOXA) gene and upregulates its expression which induces apoptosis. Such a mode of PMAIP1 activation is not dependent on p53.

View Article and Find Full Text PDF

Spermatocytes are among the most heat-sensitive cells and the exposure of testes to heat shock results in their Heat Shock Factor 1 (HSF1)-mediated apoptosis. Several lines of evidence suggest that pleckstrin-homology-like domain family A, member 1 (PHLDA1) plays a role in promoting heat shock-induced cell death in spermatogenic cells, yet its precise physiological role is not well understood. Aiming to elucidate the hypothetical role of PHLDA1 in HSF1-mediated apoptosis of spermatogenic cells we characterized its expression in mouse testes during normal development and after heat shock.

View Article and Find Full Text PDF

Heat Shock Factor 1 (HSF1) is a key regulator of gene expression during acute environmental stress that enables the cell survival, which is also involved in different cancer-related processes. A high level of HSF1 in estrogen receptor (ER)-positive breast cancer patients correlated with a worse prognosis. Here we demonstrated that 17-estradiol (E2), as well as xenoestrogen bisphenol A and ER agonist propyl pyrazole triol, led to HSF1 phosphorylation on S326 in ER positive but not in ER-negative mammary breast cancer cells.

View Article and Find Full Text PDF

Heat shock proteins (HSPs) are a large group of chaperones considered critical for maintaining cellular proteostasis. Their aberrant expression in tumors can modulate the course of processes defined as hallmarks of cancer. Previously, we showed that both stress-inducible HSPA1 and testis-enriched HSPA2, highly homologous members of the HSPA (HSP70) family, are often overexpressed in non-small cell lung carcinoma (NSCLC).

View Article and Find Full Text PDF

Background: The p53 and HSF1 transcription factors are key players in cellular responses to stress. They activate important signaling pathways triggering adaptive mechanisms that maintain cellular homeostasis. HSF1 is mainly activated by proteotoxic stress, and its induction leads to the synthesis of chaperones that provide proteome integrity.

View Article and Find Full Text PDF

SPEN (spen family transcription repressor) is a nucleic acid-binding protein putatively involved in repression of gene expression. We hypothesized that SPEN could be involved in general downregulation of the transcription during the heat shock response in mouse spermatogenic cells through its interactions with chromatin. We documented predominant nuclear localization of the SPEN protein in spermatocytes and round spermatids, which was retained after heat shock.

View Article and Find Full Text PDF

Heat shock transcription factors (HSFs), as regulators of heat shock proteins (HSPs) expression, are well known for their cytoprotective functions during cellular stress. They also play important yet less recognized roles in gametogenesis. All HSF family members are expressed during mammalian spermatogenesis, mainly in spermatocytes and round spermatids which are characterized by extensive chromatin remodeling.

View Article and Find Full Text PDF

Heat Shock Factor 1 (HSF1) is the primary transcription factor responsible for the response to cellular stress, while HSF2 becomes activated during development and differentiation, including spermatogenesis. Although both factors are indispensable for proper spermatogenesis, activation of HSF1 by heat shock initiates apoptosis of spermatogenic cells leading to infertility of males. To characterize mechanisms assisting such heat induced apoptosis we studied how HSF1 and HSF2 cooperate during the heat shock response.

View Article and Find Full Text PDF

Heat shock transcription factor 1 (HSF1), the major regulator of stress response, is frequently activated in cancer and has an apparent role in malignant transformation. Here we analyzed the influence of the over-expression of a constitutively active transcriptionally-competent HSF1 mutant form on phenotypes of mouse and human melanoma cells. We observed that the expression of active HSF1 supported anchorage-independent growth in vitro, and metastatic spread in the animal model in vivo, although the proliferation rate of cancer cells was not affected.

View Article and Find Full Text PDF

Testosterone (T), alone or in combination with progestin, provides a promising approach to hormonal male contraception. Its principle relies on enhanced negative feedback of exogenous T to suppress gonadotropins, thereby blocking the testicular T production needed for spermatogenesis, while simultaneously maintaining the extragonadal androgen actions, such as potency and libido, to avoid hypogonadism. A serious drawback of the treatment is that a significant proportion of men do not reach azoospermia or severe oligozoospermia, commensurate with contraceptive efficacy.

View Article and Find Full Text PDF

HSF1 (Heat Shock transcription Factor 1) is the main transcription factor activated in response to proteotoxic stress. Once activated, it induces an expression of heat shock proteins (HSPs) which enables cells to survive in suboptimal conditions. HSF1 could be also activated by altered kinase signaling characteristic for cancer cells, which is a probable reason for its high activity found in a broad range of tumors.

View Article and Find Full Text PDF

Background: Heat Shock Transcription Factor 1 (HSF1) is activated under stress conditions. In turn, it induces expression of Heat Shock Proteins (HSPs), which are well-known regulators of protein homeostasis. Elevated levels of HSF1 and HSPs were observed in many types of tumors.

View Article and Find Full Text PDF

Background: Elevated temperatures induce activation of the heat shock transcription factor 1 (HSF1) which in somatic cells leads to heat shock proteins synthesis and cytoprotection. However, in the male germ cells (spermatocytes) caspase-3 dependent apoptosis is induced upon HSF1 activation and spermatogenic cells are actively eliminated.

Results: To elucidate a mechanism of such diverse HSF1 activity we carried out genome-wide transcriptional analysis in control and heat-shocked cells, either spermatocytes or hepatocytes.

View Article and Find Full Text PDF

The binding of capacitated spermatozoa to the egg's extracellular coat and induction of acrosome reaction are necessary for successful fertilization in mammals. Biogenesis of acrosome is complicated, and not all proteins involved in this process are known. In this study, we have cloned a novel mouse gene, Spaca7, that is expressed exclusively in the testes.

View Article and Find Full Text PDF

Background: During functional studies on the rat stress-inducible Hspa1b (hsp70.1) gene we noticed that some liposome-based DNA carriers, which are used for transfection, induce its promoter activity. This observation concerned commercial liposome formulations (LA), Lipofectin and Lipofectamine 2000.

View Article and Find Full Text PDF

The highest expression level of a 70-kDa heat shock protein family member Hspa2 is detected specifically in meiotic and post-meiotic male germ cells, which is reflected by original name of this protein, i.e., testis-specific Hsp70.

View Article and Find Full Text PDF

Expression of constitutively active heat shock transcription factor 1 (HSF1) in mouse spermatocytes induces apoptosis and leads to male infertility. We report here that prior to the onset of massive apoptosis caused by expression of active HSF1 in spermatocytes a marked reduction in spermatocyte-specific Hsp70.2 mRNA and protein levels occurs.

View Article and Find Full Text PDF