Nanomaterials (Basel)
January 2023
The present work demonstrates the optimization of the ligand structure in the series of bis(phosphine oxide) and β-ketophosphine oxide representatives for efficient coordination of Tb and Eu ions with the formation of the complexes exhibiting high Tb- and Eu-centered luminescence. The analysis of the stoichiometry and structure of the lanthanide complexes obtained using the XRD method reveals the great impact of the bridging group nature between two phosphine oxide moieties on the coordination mode of the ligands with Tb and Eu ions. The bridging imido-group facilitates the deprotonation of the imido- bis(phosphine oxide) ligand followed by the formation of tris-complexes.
View Article and Find Full Text PDFHere we report the synthesis, in vitro antimicrobial activity, preliminary toxicity and mechanism study of a new series of 2-(2-hydroxyaryl)alkenylphosphonium salts with the variation of phosphonium moiety obtained by a two-step synthetic method from phosphine oxides. The salts showed pronounced activity against Gram-positive bacteria, including MRSA strains, and some fungi. Mechanism of action against S.
View Article and Find Full Text PDFWater-soluble trialkylammonium isatin-3-hydrazone derivatives bearing phenolic substituent were easily synthesized with high yields. XRD studies confirmed the presence of these compounds as trans-(Z)-isomers in a crystal. It was shown that an increase in the lipophilicity of the cationic center leads to an increase in activity against Gram-positive bacteria Staphylococcus aureus and Bacillus cereus, including methicillin-resistant Staphylococcus aureus (MRSA) strains.
View Article and Find Full Text PDFTrialkyl phosphonium derivatives of vinyl-substituted -chlorophenol were synthesized here by a recently developed method of preparing quaternary phosphonium salts from phosphine oxides using Grignard reagents. All the derivatives with a number () of carbon atoms in phosphonium alkyl substituents varying from 4 to 7 showed pronounced uncoupling activity in isolated rat liver mitochondria at micromolar concentrations, with a tripentyl derivative being the most effective both in accelerating respiration and causing membrane potential collapse, as well as in provoking mitochondrial swelling in a potassium-acetate medium. Remarkably, the trialkyl phosphonium derivatives with from 4 to 7 also proved to be rather potent antibacterial agents.
View Article and Find Full Text PDFHere we report the synthesis and biological evaluation of a series of new 2-hydroxybenzylphosphonium salts (QPS) with antimicrobial and antitumor dual action. The most active compounds exhibit antimicrobial activity at a micromolar level against Gram-positive bacteria Sa (ATCC 209p and clinical isolates), Bc (1-2 μM) and fungi Tm and Ca, and induced no notable hemolysis at MIC. The change in nature of substituents of the same length led to a drastic change of biological activity.
View Article and Find Full Text PDFThe increase in the resistance of pathogens, in particular Staphylococcus aureus, to the action of antibiotics necessitates the search for new readily available and non-toxic drugs. In solving this problem, phenolic acylhydrazones have high potential. In this communication, the synthesis of quaternary ammonium compounds containing a differently substituted phenolic moiety has been performed.
View Article and Find Full Text PDF2-(2-Hydroxyaryl)alkenylphosphonium salts (here coined as PPR) representing derivatives of quaternary phosphonium with two phenyl (P) and one alkyl (R) substituents linked through alkenyl bridge to substituted phenol were applied here to planar bilayer lipid membranes (BLM), isolated mitochondria, and cell culture. PPR with six carbon atoms in R (PP6) induced proton-selective currents across BLM and caused mitochondrial uncoupling. In particular, PP6 at submicromolar concentrations accelerated respiration, decreased membrane potential, and reduced ATP synthesis in isolated rat liver mitochondria (RLM).
View Article and Find Full Text PDF