Serum albumin is a popular macromolecule for studying the effect of proteins on the colloidal stability of nanoparticle (NP) dispersions, as well as the protein-nanoparticle interaction and protein corona formation. In this work, we analyze the specific conformation-dependent phase, redox, and fatty acid delivery properties of bovine albumin in the presence of shungite carbon (ShC) molecular graphenes stabilized in aqueous dispersions in the form of NPs in order to reveal the features of NP bioactivity. The formation of NP complexes with proteins (protein corona around NP) affects the transport properties of albumin for the delivery of fatty acids.
View Article and Find Full Text PDFThe bioactivity of the natural ultrafine carbon form shungite nanocarbon (ShC) is of particular interest both for biomedical applications of such nanomaterials and their negative impact on the aquatic environmental. Here we studied the interaction of serum albumin (SA) with ShC nanoparticles in aqueous dispersion with respect to its structural-dynamic, thermodynamic, and hydrodynamic effects. Electron spin resonance (EPR) with a 5-DOXYL-stearic acid spin probe (5DSA) demonstrates that ShC can affect fatty acid (FA) binding by SA, protein conformation in the stearic FA spin probe binding region, and protein aggregation due to the partial transfer of FA to the ShC nanoparticles.
View Article and Find Full Text PDF