Novel 3D printing techniques enable the development of medical devices with drug delivery systems that are tailored to the patient in terms of scaffold shape and the desired pharmaceutically active substance release. Gentle curing methods such as photopolymerization are also relevant for the incorporation of potent and sensitive drugs including proteins. However, retaining the pharmaceutical functions of proteins remains challenging due to the possible crosslinking between the functional groups of proteins, and the used photopolymers such as acrylates.
View Article and Find Full Text PDFNovel fabrication techniques based on photopolymerization enable the preparation of complex multi-material constructs for biomedical applications. This requires an understanding of the influence of the used reaction components on the properties of the generated copolymers. The identification of fundamental characteristics of these copolymers is necessary to evaluate their potential for biomaterial applications.
View Article and Find Full Text PDFHere, we present a new hybrid additive manufacturing (AM) process to create drug delivery systems (DDSs) with selectively incorporated drug depots. The matrix of a DDS was generated by stereolithography (SLA), whereas the drug depots were loaded using inkjet printing. The novel AM process combining SLA with inkjet printing was successfully implemented in an existing SLA test setup.
View Article and Find Full Text PDFSimple and sensitive liquid chromatography (LC) methods with fluorescence (FL) detection for the determination of bendamustine (BM) in human plasma and urine were developed and validated. The procedure of BM extraction from a plasma sample involved solid-phase extraction with a C18 SPE column, while liquid-liquid extraction with dichloromethane was applied for a urine sample. In both methods, cinoxacin was used as the internal standard.
View Article and Find Full Text PDFThis article focuses on correlating the column classification obtained from the method created at the Katholieke Universiteit Leuven (KUL), with the chromatographic resolution attained in biomedical separation. In the KUL system, each column is described with four parameters, which enables estimation of the FKUL value characterising similarity of those parameters to the selected reference stationary phase. Thus, a ranking list based on the FKUL value can be calculated for the chosen reference column, then correlated with the results of the column performance test.
View Article and Find Full Text PDF