Recent studies have suggested the neuroinvasive potential of severe acute respiratory coronavirus 2 (SARS-CoV-2). Notably, neuroinvasiveness might be involved in the pathophysiology of coronavirus disease 2019 (COVID-19). Some studies have demonstrated that synapse-connected routes may enable coronaviruses to access the central nervous system (CNS).
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Biol Lipids
August 2020
Lipid droplets (LDs) are organelles that have multiple roles in inflammatory and infectious diseases. LD act as essential platforms for immunometabolic regulation, including as sites for lipid storage and metabolism, inflammatory lipid mediator production, and signaling pathway compartmentalization. Accumulating evidence indicates that intracellular pathogens may exploit host LDs as source of nutrients and as part of their strategy to promote immune evasion.
View Article and Find Full Text PDFIn recent years, the functions of glial cells, namely, astrocytes and microglia, have gained prominence in several diseases of the central nervous system, especially in glioblastoma (GB), the most malignant primary brain tumor that leads to poor clinical outcomes. Studies showed that microglial cells or astrocytes play a critical role in promoting GB growth. Based on the recent findings, the complex network of the interaction between microglial/astrocytes cells and GB may constitute a potential therapeutic target to overcome tumor malignancy.
View Article and Find Full Text PDFMost eukaryotic cells contain varying amounts of cytosolic lipidic inclusions termed lipid bodies (LBs) or lipid droplets (LDs). In mammalian cells, such as macrophages, these lipid-rich organelles are formed in response to host-pathogen interaction during infectious diseases and are sites for biosynthesis of arachidonic acid (AA)-derived inflammatory mediators (eicosanoids). Less clear are the functions of LBs in pathogenic lower eukaryotes.
View Article and Find Full Text PDFThe nuclear receptor PPARγ acts as a key modulator of lipid metabolism, inflammation and pathogenesis in BCG-infected macrophages. However, the molecular mechanisms involved in PPARγ expression and functions during infection are not completely understood. Here, we investigate signaling pathways triggered by TLR2, the involvement of co-receptors and lipid rafts in the mechanism of PPARγ expression, lipid body formation and cytokine synthesis in macrophages during BCG infection.
View Article and Find Full Text PDFLipid bodies (lipid droplets) are lipid-rich organelles with functions in cell metabolism and signaling. Here, we investigate the mechanisms of Trypanosoma cruzi-induced lipid body formation and their contributions to host-parasite interplay. We demonstrate that T.
View Article and Find Full Text PDFNeutrophil influx to sites of mycobacterial infections is one of the first events of tuberculosis pathogenesis. However, the role of early neutrophil recruitment in mycobacterial infection is not completely understood. We investigated the rate of neutrophil apoptosis and the role of macrophage uptake of apoptotic neutrophils in a pleural tuberculosis model induced by BCG.
View Article and Find Full Text PDFAn acute and persistent eosinophil infiltration is observed during Mycobacterium bovis BCG pleural infection in mice. Eosinophil accumulation, lipid body formation, and eotaxin production were significantly reduced in BCG-infected Toll-like receptor-2 (TLR2)-deficient mice compared to wild-type mice. Neutralization of eotaxin or CCR3 drastically inhibited BCG-induced eosinophil accumulation and lipid body formation, indicating that BCG-induced eosinophil recruitment and activation is largely dependent of TLR2-mediated eotaxin generation.
View Article and Find Full Text PDF