Multiple sclerosis (MS) is an autoimmune chronic inflammatory disease of the central nervous system (CNS). Cross-reactivity of neuronal proteins with exogenous antigens is considered one of the possible mechanisms of MS triggering. Previously, we showed that monoclonal myelin basic protein (MBP)-specific antibodies from MS patients cross-react with Epstein-Barr virus (EBV) latent membrane protein 1 (LMP1).
View Article and Find Full Text PDFUltrahigh-throughput screening (uHTS) techniques can identify unique functionality from millions of variants. To mimic the natural selection mechanisms that occur by compartmentalization in vivo, we developed a technique based on single-cell encapsulation in droplets of a monodisperse microfluidic double water-in-oil-in-water emulsion (MDE). Biocompatible MDE enables in-droplet cultivation of different living species.
View Article and Find Full Text PDFMechanisms of axonal damage and adaptive capacity in multiple sclerosis (MS), including cortical reorganization, have been actively studied in recent years. The lack of regenerative capabilities and the irreversibility of neurodegeneration in MS are critical factors for the optimization of MS treatment. In this study, we present the results of clinical and basic studies in the field of MS by two leading Russian centers.
View Article and Find Full Text PDFRecent findings indicate that the ubiquitin-proteasome system is involved in the pathogenesis of cancer as well as autoimmune and several neurodegenerative diseases, and is thus a target for novel therapeutics. One disease that is related to aberrant protein degradation is multiple sclerosis, an autoimmune disorder involving the processing and presentation of myelin autoantigens that leads to the destruction of axons. Here, we show that brain-derived proteasomes from SJL mice with experimental autoimmune encephalomyelitis (EAE) in an ubiquitin-independent manner generate significantly increased amounts of myelin basic protein peptides that induces cytotoxic lymphocytes to target mature oligodendrocytes ex vivo.
View Article and Find Full Text PDFThe vast majority of cellular proteins are degraded by the 26S proteasome after their ubiquitination. Here, we report that the major component of the myelin multilayered membrane sheath, myelin basic protein (MBP), is hydrolyzed by the 26S proteasome in a ubiquitin-independent manner both in vitro and in mammalian cells. As a proteasomal substrate, MBP reveals a distinct and physiologically relevant concentration range for ubiquitin-independent proteolysis.
View Article and Find Full Text PDFActa Crystallogr D Biol Crystallogr
March 2014
The engineering of catalytic function in antibodies requires precise information on their structure. Here, results are presented that show how the antibody domain structure affects its functionality. The previously designed organophosphate-metabolizing reactibody A17 has been re-engineered by replacing its constant κ light chain by the λ chain (A17λ), and the X-ray structure of A17λ has been determined at 1.
View Article and Find Full Text PDFThe mechanisms triggering most of autoimmune diseases are still obscure. Autoreactive B cells play a crucial role in the development of such pathologies and, in particular, production of autoantibodies of different specificities. The combination of deep-sequencing technology with functional studies of antibodies selected from highly representative immunoglobulin combinatorial libraries may provide unique information on specific features in the repertoires of autoreactive B cells.
View Article and Find Full Text PDFThe creation of effective bioscavengers as a pretreatment for exposure to nerve agents is a challenging medical objective. We report a recombinant method using chemical polysialylation to generate bioscavengers stable in the bloodstream. Development of a CHO-based expression system using genes encoding human butyrylcholinesterase and a proline-rich peptide under elongation factor promoter control resulted in self-assembling, active enzyme multimers.
View Article and Find Full Text PDFMultiple sclerosis (MS) is a severe inflammatory and neurodegenerative disease with an autoimmune background. Despite the variety of therapeutics available against MS, the development of novel approaches to its treatment is of high importance in modern pharmaceutics. In this study, experimental autoimmune encephalomyelitis (EAE) in Dark Agouti rats has been treated with immunodominant peptides of the myelin basic protein (MBP) encapsulated in mannosylated small unilamellar vesicles.
View Article and Find Full Text PDFIgs offer a versatile template for combinatorial and rational design approaches to the de novo creation of catalytically active proteins. We have used a covalent capture selection strategy to identify biocatalysts from within a human semisynthetic antibody variable fragment library that uses a nucleophilic mechanism. Specific phosphonylation at a single tyrosine within the variable light-chain framework was confirmed in a recombinant IgG construct.
View Article and Find Full Text PDFMultiple sclerosis (MS) is a widespread neurodegenerative autoimmune disease with unknown etiology. It is increasingly evident that, together with pathogenic T cells, autoreactive B cells are among the major players in MS development. The analysis of myelin neuroantigen-specific antibody repertoires and their possible cross-reactivity against environmental antigens, including viral proteins, could shed light on the mechanism of MS induction and progression.
View Article and Find Full Text PDFB cells play an important role in the pathogenesis of both systemic and organ-specific autoimmune diseases. Autoreactive B cells not only produce autoantibodies, but also are capable to efficiently present specific autoantigens to T cells. Furthermore, B cells can secrete proinflammatory cytokines and amplify the vicious process of self-destruction.
View Article and Find Full Text PDFThe immunoglobulin molecule is a perfect template for the de novo generation of biocatalytic functions. Catalytic antibodies, or abzymes, obtained by the structural mimicking of enzyme active sites have been shown to catalyze numerous chemical reactions. Natural enzyme analogs for some of these reactions have not yet been found or possibly do not exist at all.
View Article and Find Full Text PDFTremendous efforts to produce an efficient vaccine for HIV infection have been unsuccessful. The ability of HIV to utilize sophisticated mechanisms to escape killing by host immune system rises dramatic problems in the development of antiviral therapeutics. The HIV infection proceeds by interaction of coat viral glycoprotein gp120 trimer with CD4(+) receptor of the lymphocyte.
View Article and Find Full Text PDFReactivity-based selection strategies have been used to enrich combinatorial libraries for encoded biocatalysts having revised substrate specificity or altered catalytic activity. This approach can also assist in artificial evolution of enzyme catalysis from protein templates without bias for predefined catalytic sites. The prevalence of covalent intermediates in enzymatic mechanisms suggests the universal utility of the covalent complex as the basis for selection.
View Article and Find Full Text PDFFunctional imaging of subtilisin Carlsberg active center by the idiotypic network yielded a catalytic anti-idiotypic antibody with endopeptidase, amidase, and esterase activities. A monoclonal antibody inhibitory to subtilisin (Ab1 5-H4) was employed as the template for guiding the idiotypic network to produce the catalytic anti-idiotypic Ab2 6B8-E12. Proteolytic activity of 6B8-E12 was demonstrated by zymography using self-quenched fluorescein-BSA conjugate and in a coupled assay detecting Ab2-dependent RNase A inactivation.
View Article and Find Full Text PDFWe have induced a polyclonal IgG that degrades the HIV-1 surface antigen, glycoprotein gp120, by taking advantage of the susceptibility of SJL mice to a peptide-induced autoimmune disorder, experimental autoimmune encephalomyelitis (EAE). Specific pathogen-free SJL mice were immunized with structural fragments of gp120, fused in-frame with encephalitogenic peptide MBP(85-101). It has resulted in a pronounced disease-associated immune response against antigens.
View Article and Find Full Text PDFAutoantibody-mediated tissue destruction is among the main features of organ-specific autoimmunity. This report describes "an antibody enzyme" (abzyme) contribution to the site-specific degradation of a neural antigen. We detected proteolytic activity toward myelin basic protein (MBP) in the fraction of antibodies purified from the sera of humans with multiple sclerosis (MS) and mice with induced experimental allergic encephalomyelitis.
View Article and Find Full Text PDFAutoantibodies toward myelin basic protein (MBP) evidently emerge in sera and cerebrospinal fluid of the patients with multiple sclerosis (MS), as well as in a MS rodent model, i.e., experimental autoimmune encephalomyelitis (EAE).
View Article and Find Full Text PDF