Self-assembly of organic molecules represents a fascinating playground to create various liquid crystalline nanostructures. In this Letter, we study layer undulations on micrometer scale in smectic A phases for achiral compounds, experimentally demonstrated as regular stripe patterns induced by thermal treatment. Undulations, including their anharmonic properties, are evaluated by means of polarimetric imaging and light diffraction experiments in cells with various thicknesses.
View Article and Find Full Text PDFBent-shaped mesogens possessing a biphenyl as a central core have been synthesized and the role of the terminal chain and the orientation of the ester as a linkage group have been investigated. For the studied molecular core we have established that both parameters play an important role for the mesomorphic properties. The polyfluoroalkyl terminal chain supports the formation of mesophases, and the introduction of a chiral lactate terminal chain destabilizes mesophases for the first type of mutual orientation of ester groups, attached to the central core.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
December 2011
Binary mixtures of chiral liquid crystalline homologs have been studied. One compound designated 9ZBL exhibited reentrancy of a paraelectric smectic-A* phase, SmA*(RE), below the ferroelectric SmC* phase in the SmA*-SmC*-SmA*RE phase sequence. Stabilization of the SmA(RE) phase is established from studying binary mixtures of 9ZBL with its neighboring homologs 8ZBL and 10ZBL.
View Article and Find Full Text PDF