In search for chemically stable americium compounds with high power densities for radioisotope sources for space applications, AmVO and AmVO were prepared by a solid-state reaction. We present here their crystal structure at room temperature solved by powder X-ray diffraction combined with Rietveld refinement. Their thermal and self-irradiation stabilities have been studied.
View Article and Find Full Text PDFThis paper details the first dedicated production of homogeneous nanocrystalline particles of mixed actinide oxide solid solutions containing americium. The target compositions were UPuAmO, UAmO and UAmO. After successful hydrothermal synthesis and chemical characterisation, the nanocrystals were sintered and their structure and behaviour under self-irradiation were studied by powder XRD.
View Article and Find Full Text PDFSince 1970, people have been making every endeavor to reduce toxic emissions from automobiles. After the development of a three-way catalyst (TWC) that concurrently converts three harmful gases, carbon monoxide (CO), hydrocarbons (HCs), and nitrogen oxides (NO ), Rh became an essential element in automobile technology because only Rh works efficiently for catalytic NO reduction. However, due to the sharp price spike in 2007, numerous efforts have been made to replace Rh in TWCs.
View Article and Find Full Text PDFTransition metal carbides have attractive physical and chemical properties that are much different from their parent metals. Particularly, noble metal carbides are expected to be promising materials for a variety of applications, particularly as efficient catalysts. However, noble metal carbides have rarely been obtained because carbide phases do not appear in noble metal-carbon phase diagrams and a reasonable synthesis method to make noble metal carbides has not yet been established.
View Article and Find Full Text PDFMetal-organic frameworks (MOFs) provide highly selective catalytic activity because of their porous crystalline structure. There is particular interest in metal nanoparticle-MOF composites (MNP@MOF) that could take advantage of synergistic effects for enhanced catalytic properties. We present an investigation into the local geometry and electronic properties of thermally decomposed Ni-MOF-74 calcined at different temperatures and time durations.
View Article and Find Full Text PDFIn this work, multifunctional oxide NdNiO (NNO) thin films grown on a SrTiO (STO) substrate using pulsed-laser deposition are studied. Temperature dependent resistivity measurements revealed that NNO/STO samples exhibit a sharp thickness dependent metal-insulator transition (MIT) over a range of 150-200 K. It is known that the electronic properties of correlated oxides are extremely complex and sensitive to changes in orbital occupancy.
View Article and Find Full Text PDFThe change in electronic structure of extremely small RhCu alloy nanoparticles (NPs) with composition variation was investigated by core-level (CL) and valence-band (VB) hard X-ray photoelectron spectroscopy. A combination of CL and VB spectra analyses confirmed that intermetallic charge transfer occurs between Rh and Cu. This is an important compensation mechanism that helps to explain the relationship between the catalytic activity and composition of RhCu alloy NPs.
View Article and Find Full Text PDFInterfaces of two dissimilar complex oxides exhibit exotic physical properties that are absent in their parent compounds. Of particular interest is insulating LaAlO3 films on an insulating SrTiO3 substrate, where transport measurements have shown a metal-insulator transition as a function of LaAlO3 thickness. Their origin has become the subject of intense research, yet a unifying consensus remains elusive.
View Article and Find Full Text PDF