Publications by authors named "Natalia Oganesyan"

CRM is a genetically detoxified mutant of diphtheria toxin (DT) that is widely used as a carrier protein in conjugate vaccines. Protective immune responses to several bacterial diseases are obtained by coupling CRM to glycans from these pathogens. Wild-type DT has been described in two oligomeric forms: a monomer and a domain-swapped dimer.

View Article and Find Full Text PDF

Cross-reacting material 197 (CRM), a single amino acid mutant of diphtheria toxoid, is a commonly used carrier protein in commercial polysaccharide protein conjugate vaccines. In this study, CRM proteins from 3 different expression systems and 5 different manufacturers were obtained for an analytical comparability assessment using a wide variety of physicochemical and in vitro antigenic binding assays. A comprehensive analysis of the 5 CRM molecules demonstrate that recombinant CRM's expressed in heterologous systems (Escherichia coli and Pseudomonas fluorescens) are overall highly similar (if not better in some cases) to those expressed in the traditional system (Corynebacterium diphtheriae) in terms of primary sequence/post-translational modifications, higher order structural integrity, apparent solubility, physical stability profile (vs.

View Article and Find Full Text PDF

Plasmodium subtilisin 2 (Sub2) is a multidomain protein that plays an important role in malaria infection. Here, we describe the solution NMR structure of a conserved region of the inhibitory prodomain of Sub2 from Plasmodium falciparum, termed prosub2. Despite the absence of any detectable sequence homology, the protozoan prosub2 has structural similarity to bacterial and mammalian subtilisin-like prodomains.

View Article and Find Full Text PDF

Overexpressed recombinant proteins in bacteria often tend to misfold and accumulate as soluble aggregates and/or inclusion bodies. A strategy for improving the level of expression of recombinant proteins in a soluble native form is to increase the cellular concentration of osmolytes or of chaperones. This can be accomplished by growing the bacterial cells in the presence of high salt, sorbitol, and betaine as well as exposing the cells to a heat shock step.

View Article and Find Full Text PDF

One major bottleneck in protein production in Escherichia coli for structural genomics projects is the formation of insoluble protein aggregates (inclusion bodies). The efficient refolding of proteins from inclusion bodies is becoming an important tool that can provide soluble native proteins for structural and functional studies. Here we report an on-column refolding method established at the Berkeley Structural Genomics Center (BSGC).

View Article and Find Full Text PDF

The initial aim of the Berkeley Structural Genomics Center is to obtain a near-complete structural complement of two minimal organisms, closely related pathogens Mycoplasma genitalium and M. pneumoniae. The former has fewer than 500 genes and the latter fewer than 700 genes.

View Article and Find Full Text PDF

The phoU gene of Aquifex aeolicus encodes a protein called PHOU_AQUAE with sequence similarity to the PhoU protein of Escherichia coli. Despite the fact that there is a large number of family members (more than 300) attributed to almost all known bacteria and despite PHOU_AQUAE's association with the regulation of genes for phosphate metabolism, the nature of its regulatory function is not well understood. Nearly one-half of these PhoU-like proteins, including both PHOU_AQUAE and the one from E.

View Article and Find Full Text PDF

We have determined the crystal structure of nicotinate phosphoribosyltransferase from Themoplasma acidophilum (TaNAPRTase). The TaNAPRTase has three domains, an N-terminal domain, a central functional domain, and a unique C-terminal domain. The crystal structure revealed that the functional domain has a type II phosphoribosyltransferase fold that may be a common architecture for both nicotinic acid and quinolinic acid (QA) phosphoribosyltransferases (PRTase) despite low sequence similarity between them.

View Article and Find Full Text PDF

One of the first key steps in structural genomics is high-throughput expression and rapid screening to select highly soluble proteins, the preferred candidates for crystal production. Here we describe the methodology used at the Berkeley Structural Genomics Center (BSGC) for automated parallel expression and small-scale purification of fusion proteins using a 96-well format. Our robotic method includes cell lysis, soluble fraction separation and purification with affinity resins.

View Article and Find Full Text PDF

The endothelial cell protein C receptor (EPCR) shares approximately 20% sequence identity with the major histocompatibility complex class 1/CD1 family of molecules, accelerates the thrombin-thrombomodulin-dependent generation of activated protein C, a natural anticoagulant, binds to activated neutrophils, and can undergo translocation from the plasma membrane to the nucleus. Blocking protein C/activated protein C binding to the receptor inhibits not only protein C activation but the ability of the host to respond appropriately to bacterial challenge, exacerbating both the coagulant and inflammatory responses. To understand how EPCR accomplishes these multiple tasks, we solved the crystal structure of EPCR alone and in complex with the phospholipid binding domain of protein C.

View Article and Find Full Text PDF