Background: Surgery for cervical spondylotic myelopathy (CSM) is generally safe and effective. Nonetheless, complications occur in 11% to 38% of patients. Knowledge of important predictors of complications will help clinicians identify high-risk patients and institute prevention and management strategies.
View Article and Find Full Text PDFBackground: Given the increasing emphasis on the community management of spinal cord injury (SCI), strategies that could be developed and implemented in order to empower and engage individuals with SCI in promoting their health and minimizing the risk of health conditions are required. A self-management program could be one approach to address these complex needs, including secondary complications. Thus, the objective of this study was to determine the importance attributed to the components of a self-management program by individuals with traumatic SCI and explore their views/opinions about the delivery of such a program.
View Article and Find Full Text PDFBackground: Infections are the leading cause of death in the acute phase following spinal cord injury and qualify as independent risk factor for poor neurological outcome ("disease modifying factor"). The enhanced susceptibility for infections is not stringently explained by the increased risk of aspiration in tetraplegic patients, neurogenic bladder dysfunction, or by high-dose methylprednisolone treatment. Experimental and clinical pilot data suggest that spinal cord injury disrupts the balanced interplay between the central nervous system and the immune system.
View Article and Find Full Text PDFIntroduction: While numerous studies have documented evidence for plasticity of the human brain there is little evidence that the human spinal cord can change after injury. Here, we employ a novel spinal fMRI design where we stimulate normal and abnormal sensory dermatomes in persons with traumatic spinal cord injury and perform a connectivity analysis to understand how spinal networks process information.
Methods: Spinal fMRI data was collected at 3 Tesla at two institutions from 38 individuals using the standard SEEP functional MR imaging techniques.
We demonstrate a new sensitive biosensor for detection of vital fungal spores of Aspergillus niger. The biosensor is based on silicon microfabricated cantilever arrays operated in dynamic mode. The change in resonance frequency of the sensor is a function of mass binding to the cantilever surface.
View Article and Find Full Text PDFWe demonstrate the use of micromechanical cantilever arrays for selective immobilization and fast quantitative detection of vital fungal spores. Micro-fabricated uncoated as well as gold-coated silicon cantilevers were functionalized with concanavalin A, fibronectin or immunoglobulin G. In our experiments two major morphological fungal forms were used--the mycelial form Aspergillus niger and the unicellular yeast form Saccharomyces cerevisiae, as models to explore a new method for growth detection of eukaryotic organisms using cantilever arrays.
View Article and Find Full Text PDFBiosens Bioelectron
September 2005
A rapid biosensor for the detection of bacterial growth was developed using micromechanical oscillators coated by common nutritive layers. The change in resonance frequency as a function of the increasing mass on a cantilever array forms the basis of the detection scheme. The sensor is able to detect active growth of Escherichia coli cells within 1 h which is significantly faster than any conventional plating method which requires at least 24 h.
View Article and Find Full Text PDFAppl Environ Microbiol
May 2005
A rapid biosensor for the detection of bacterial growth was developed using micromechanical oscillators coated in common nutritive layers. The change in resonance frequency as a function of the increasing mass on a cantilever array forms the basis of the detection scheme. The calculated mass sensitivity according to the mechanical properties of the cantilever sensor is approximately 50 pg/Hz; this mass corresponds to an approximate sensitivity of approximately 100 Escherichia coli cells.
View Article and Find Full Text PDF