Publications by authors named "Natalia N Pouchkina-Stantcheva"

Hymenolepis microstoma, the mouse bile-duct tapeworm, is a classical rodent-hosted model that provides easy laboratory access to all stages of the life cycle. Recent characterisation of its genome has greatly advanced its utility for molecular research, albeit contemporary techniques such as those for assaying gene function have yet to be developed in the system. Here we present research on the development of RNA-mediated gene suppression via RNA interference (RNAi), and on in vitro culture of the enteric, adult phase of the life cycle to support this work.

View Article and Find Full Text PDF

Relative quantification of gene expression by real-time PCR relies on the use of reference genes whose expressed levels remain consistent across experimental conditions. Here we compare expression levels of commonly employed endogenous housekeeping genes against a developmental regulatory gene in the model tapeworm Hymenolepis microstoma, examining variation both spatially across regions of the adult worm and temporally through the course of larval metamorphosis. β-Tubulin, RNA polymerase II and 60S ribosomal subunit L28 showed the most variance among candidate reference genes when comparing changes in expression along the anteroposterior gradient of development represented by the adult body, whereas expression of 18S rDNA and cyclic AMP were highly consistent and could be used reliably for relative quantification.

View Article and Find Full Text PDF

Theory suggests it should be difficult for asexual organisms to adapt to a changing environment because genetic diversity can only arise from mutations accumulating within direct antecedents and not through sexual exchange. In an asexual microinvertebrate, the bdelloid rotifer, we have observed a mechanism by which such organisms could acquire the diversity needed for adaptation. Gene copies most likely representing former alleles have diverged in function so that the proteins they encode play complementary roles in survival of dry conditions.

View Article and Find Full Text PDF

In kinetoplastids, Euglena, and four metazoan phyla, trans-splicing has been described as a mechanism for the generation of mature messenger RNAs (mRNAs): 5'-ends of precursor mRNAs are replaced by a short spliced leader (SL) exon from a small SL RNA. Although the full phylogenetic range is unknown, trans-splicing has not been found in vertebrates, insects, plants, or yeast. In animal groups where it does occur, i.

View Article and Find Full Text PDF

Various spider species produce dragline silks with different mechanical properties. The primary structure of silk proteins is thought to contribute to the elasticity and strength of the fibres. Previously published work has demonstrated that the dragline silk of Euprosthenops sp.

View Article and Find Full Text PDF