Publications by authors named "Natalia Molotkova"

Understanding the level of genome organization that governs gene regulation remains a challenge despite advancements in chromatin profiling techniques. Cell type specific chromatin architectures may be obscured by averaging heterogeneous cell populations. Here we took a reductionist perspective, starting with the relocation of the gene to the nuclear lamina in neuroblasts.

View Article and Find Full Text PDF

Genome organization is thought to underlie cell type specific gene expression, yet how it is regulated in progenitors to produce cellular diversity is unknown. In Drosophila, a developmentally-timed genome reorganization in neural progenitors terminates competence to produce early-born neurons. These events require downregulation of Distal antenna (Dan), part of the conserved pipsqueak DNA-binding superfamily.

View Article and Find Full Text PDF

The nuclear lamina is typically associated with transcriptional silencing, and peripheral relocation of genes highly correlates with repression. However, the DNA sequences and proteins regulating gene-lamina interactions are largely unknown. Exploiting the developmentally timed hunchback gene movement to the lamina in Drosophila neuroblasts, we identified a 250 bp intronic element (IE) both necessary and sufficient for relocation.

View Article and Find Full Text PDF

Background: There is evidence that angiotensin-converting enzyme 2 (ACE2) is cardioprotective. To assess this in the post-myocardial infarction (MI) heart, we treated adult male Sprague-Dawley rats with either placebo (PL) or C16, a selective ACE2 inhibitor, after permanent coronary artery ligation or sham operation.

Methods And Results: Coronary artery ligation resulting in MI between 25% to 50% of the left ventricular (LV) circumference caused substantial cardiac remodeling.

View Article and Find Full Text PDF

Retinoic acid (RA) is thought to be a key signaling molecule involved in limb bud patterning along the proximodistal or anteroposterior axes functioning through induction of Meis2 and Shh, respectively. Here, we utilize Raldh2-/- and Raldh3-/- mouse embryos lacking RA synthesis to demonstrate that RA signaling is not required for limb expression of Shh and Meis2. We demonstrate that RA action is required outside of the limb field in the body axis during forelimb induction but that RA is unnecessary at later stages when hindlimb budding and patterning occur.

View Article and Find Full Text PDF

Retinoic acid (RA) synthesized by Raldh3 in the frontonasal surface ectoderm of chick embryos has been suggested to function in early forebrain patterning by regulating Fgf8, Shh, and Meis2 expression. Similar expression of Raldh3 exists in E8.75 mouse embryos, but Raldh2 is also expressed in the optic vesicle at this stage suggesting that both genes may play a role in early forebrain patterning.

View Article and Find Full Text PDF

Retinoic acid (RA) is required for patterning of the posterior nervous system, but its role in the retina remains unclear. RA is synthesized in discrete regions of the embryonic eye by three retinaldehyde dehydrogenases (RALDHs) displaying distinct expression patterns. Overlapping functions of these enzymes have hampered genetic efforts to elucidate RA function in the eye.

View Article and Find Full Text PDF

Studies on nonmammalian vertebrate embryos have indicated that retinoic acid (RA) is required for pancreas development. We have analyzed mouse embryos carrying a null mutation of the gene encoding retinaldehyde dehydrogenase 2 (Raldh2), which controls RA synthesis. Raldh2-/- embryos specifically lack expression of Pdx1 (a homeobox gene required for pancreas development) and Prox1 in dorsal endodermal but not ventral endodermal pancreatic precursor tissues.

View Article and Find Full Text PDF

Studies in amphibian embryos have suggested that retinoic acid (RA) may function as a signal that stimulates posterior differentiation of the nervous system as postulated by the activation-transformation model for anteroposterior patterning of the nervous system. We have tested this hypothesis in retinaldehyde dehydrogenase-2 (Raldh2) null mutant mice lacking RA synthesis in the somitic mesoderm. Raldh2(-/-) embryos exhibited neural induction (activation) as evidenced by expression of Sox1 and Sox2 along the neural plate, but differentiation of spinal cord neuroectodermal progenitor cells (posterior transformation) did not occur as demonstrated by a loss of Pax6 and Olig2 expression along the posterior neural plate.

View Article and Find Full Text PDF

Three retinaldehyde dehydrogenase genes (Raldh1, Raldh2, and Raldh3) expressed in unique spatiotemporal patterns may control synthesis of retinoic acid (RA) needed for retina development. However, previous studies indicate that retina formation still proceeds normally in Raldh1-/- mouse embryos lacking RA synthesis in the dorsal neural retina at the optic cup stage. Here, we demonstrate that Raldh2-/- embryos lacking RA synthesis in the optic vesicle exhibit a failure in retina invagination needed to develop an optic cup.

View Article and Find Full Text PDF