Photochem Photobiol
September 2021
Opsin-based transmembrane voltage sensors (OTVSs) are membrane proteins increasingly used in optogenetic applications to measure voltage changes across cellular membranes. In order to better understand the photophysical properties of OTVSs, we used a combination of UV-Vis absorption, fluorescence and FT-Raman spectroscopy to characterize QuasAr2 and NovArch, two closely related mutants derived from the proton pump archaerhodopsin-3 (AR3). We find both QuasAr2 and NovArch can be optically cycled repeatedly between O-like and M-like states using 5-min exposure to red (660 nm) and near-UV (405 nm) light.
View Article and Find Full Text PDFOpsin-based transmembrane voltage sensors (OTVSs) are increasingly important tools for neuroscience enabling neural function in complex brain circuits to be explored in live, behaving animals. However, the visible wavelengths required for fluorescence excitation of the current generation of OTVSs limit optogenetic imaging in the brain to depths of only a few mm due to the strong absorption and scattering of visible light by biological tissues. We report that substitution of the native A1 retinal chromophore of the widely used QuasAr1/2 OTVSs with the retinal analog MMAR containing a methylamino-modified dimethylphenyl ring results in over a 100-nm redshift of the maxima of the absorption and fluorescence emission bands to near 700 and 840 nm, respectively.
View Article and Find Full Text PDFVoltage imaging allows mapping of the membrane potential in living cells. Yet, current intensity-based imaging approaches are limited to relative membrane potential changes, missing important information conveyed by the absolute value of the membrane voltage. This challenge arises from various factors affecting the signal intensity, such as concentration, illumination intensity, and photobleaching.
View Article and Find Full Text PDFMicrobial rhodopsins have become an important tool in the field of optogenetics. However, effective in vivo optogenetics is in many cases severely limited due to the strong absorption and scattering of visible light by biological tissues. Recently, a combination of opsin site-directed mutagenesis and analog retinal substitution has produced variants of proteorhodopsin which absorb maximally in the near-infrared (NIR).
View Article and Find Full Text PDFA recently discovered natural family of light-gated anion channelrhodopsins (ACRs) from cryptophyte algae provides an effective means of optogenetically silencing neurons. The most extensively studied ACR is from Guillardia theta (GtACR1). Earlier studies of GtACR1 have established a correlation between formation of a blue-shifted L-like intermediate and the anion channel "open" state.
View Article and Find Full Text PDFOptogenetics relies on the expression of specific microbial rhodopsins in the neuronal plasma membrane. Most notably, this includes channelrhodopsins, which when heterologously expressed in neurons function as light-gated cation channels. Recently, a new class of microbial rhodopsins, termed anion channel rhodopsins (ACRs), has been discovered.
View Article and Find Full Text PDFThe filoviruses, Marburg marburgvirus (MARV), Zaire ebolavirus (ZEBOV), and Sudan ebolavirus (SEBOV), cause severe and often fatal hemorrhagic fever in humans and nonhuman primates (NHPs). Monovalent recombinant vesicular stomatitis virus (rVSV)-based vaccine vectors, which encode a filovirus glycoprotein (GP) in place of the VSV glycoprotein, have shown 100% efficacy against homologous filovirus challenge in rodent and NHP studies. Here, we examined the utility of a single-vector, single-injection trivalent rVSV vector expressing MARV, ZEBOV, and SEBOV GPs to protect against MARV-, ZEBOV-, and SEBOV-induced disease in outbred Hartley guinea pigs where we observed protection from effects of all 3 filoviruses.
View Article and Find Full Text PDFMany applications in pharmaceutical development, clinical diagnostics, and biological research demand rapid detection of multiple analytes (multiplexed detection) in a minimal volume. This need has led to the development of several novel array-based sensors. The most successful of these so far have been suspension arrays based on polystyrene beads.
View Article and Find Full Text PDF