Publications by authors named "Natalia Mackenzie"

Skin that is exposed to radiation has an impaired ability to heal wounds. This is especially true for whole-body irradiation, where even moderate nonlethal doses can result in wound-healing deficits. Our previous attempts to administer dermal cells locally to wounds to correct radiation-induced deficits were hampered by poor cell retention.

View Article and Find Full Text PDF

Copper is an essential ion that forms part of the active sites of many proteins. At the same time, an excess of this metal produces free radicals that are toxic for cells and organisms. Fish have been used extensively to study the effects of metals, including copper, present in food or the environment.

View Article and Find Full Text PDF

Background: Zebrafish germ cells contain granular-like structures, organized around the cell nucleus. These structures share common features with polar granules in Drosophila, germinal granules in Xenopus and chromatoid bodies in mice germ cells, such as the localization of the zebrafish Vasa, Piwi and Nanos proteins, among others. Little is known about the structure of these granules as well as their segregation in mitosis during early germ-cell development.

View Article and Find Full Text PDF

Epithelial mesenchymal transition (EMT) is a complex process that involves changes in gene expression, cytoskeleton organization, cell adhesion, and extracellular matrix composition. Screening for genes mediating EMT and cancer metastasis, Waerner, Alacakaptan, and colleagues identified ILEI, a cytokine-like protein that plays an essential role in EMT, tumor growth, and late steps of metastasis.

View Article and Find Full Text PDF

The high-affinity copper transporter 1 (Ctr1) is a highly conserved transmembrane protein that mediates the internalization of copper ions from the extracellular medium. In this study, we have isolated the zebrafish ctr1 gene. The zebrafish ctr1 cDNA encodes a protein with 69% identity to the human orthologue and shows conservation of specific amino acid residues involved in copper transport.

View Article and Find Full Text PDF