Publications by authors named "Natalia L Zhukovskaya"

Feline herpes virus-1 (FHV-1) is ubiquitous in the cat population and is a major cause of blindness for which antiviral drugs, including acyclovir, are not completely effective. Recurrent infections, due to reactivation of latent FHV-1 residing in the trigeminal ganglia, can lead to epithelial keratitis and stromal keratitis and eventually loss of sight. This has prompted the medical need for an antiviral drug that will specifically inhibit FHV-1 infection.

View Article and Find Full Text PDF

Anthrax edema factor (EF) is a highly active calmodulin-dependent adenylyl cyclase toxin that can potently raise intracellular cAMP levels causing a broad range of tissue damage. EF needs anthrax protective antigen (PA) to enter into the host cell and together they form edema toxin. Here, we examine factors that are critical for edema toxin cell entry and potency.

View Article and Find Full Text PDF

Edema factor (EF), a key anthrax exotoxin, has an anthrax protective antigen-binding domain (PABD) and a calmodulin (CaM)-activated adenylyl cyclase domain. Here, we report the crystal structures of CaM-bound EF, revealing the architecture of EF PABD. CaM has N- and C-terminal domains and each domain can bind two calcium ions.

View Article and Find Full Text PDF

Anthrax edema factor (EF) raises host intracellular cAMP to pathological levels through a calcium-calmodulin (CaM)-dependent adenylyl cyclase activity. Here we report the structure of EF.CaM in complex with its reaction products, cAMP and PP(i).

View Article and Find Full Text PDF

Anthrax edema factor (EF) is a key virulence factor secreted by Bacillus anthracis. Here, we report a structure, at 3.0 A resolution, of the catalytic domain of EF (EF3) in complex with calmodulin (CaM) and adenosine 5'-(alpha,beta-methylene)-triphosphate (AMPCPP).

View Article and Find Full Text PDF

Edema factor (EF), a key virulence factor in anthrax pathogenesis, has calmodulin (CaM)-activated adenylyl cyclase activity. We have found that adefovir dipivoxil, a drug approved to treat chronic infection of hepatitis B virus, effectively inhibits EF-induced cAMP accumulation and changes in cytokine production in mouse primary macrophages. Adefovir diphosphate (PMEApp), the active cellular metabolite of adefovir dipivoxil, inhibits the adenylyl cyclase activity of EF in vitro with high affinity (K(i) = 27 nM).

View Article and Find Full Text PDF