2H MoTe (molybdenum ditelluride) has generated significant interest because of its superconducting, nonvolatile memory, and semiconducting of new materials, and it has a large range of electrical properties. The combination of transition metal dichalcogenides (TMDCs) and two dimensional (2D) materials like hexagonal boron nitride (h-BN) in lateral heterostructures offers a unique platform for designing and engineering novel electronic devices. We report the fabrication of highly conductive interfaces in crystalline ionic liquid-gated (ILG) field-effect transistors (FETs) consisting of a few layers of MoTe/h-BN heterojunctions.
View Article and Find Full Text PDFIn this work, we present the characterization and electrochemical performance of various ternary silicon oxycarbide/graphite/tin (SiOC/C/Sn) nanocomposites as anodes for lithium-ion batteries. In binary SiOC/Sn composites, tin nanoparticles may be produced in situ via carbothermal reduction of SnO to metallic Sn, which consumes free carbon from the SiOC ceramic phase, thereby limiting the carbon content in the final ceramic nanocomposite. Therefore, to avoid drawbacks with carbon depletion, we used graphite as a substitute during the synthesis of precursors.
View Article and Find Full Text PDF