Melatonin has been reported to cause myocardial electrophysiological changes and prevent ventricular tachycardia or fibrillation (VT/VF) in ischemia and reperfusion. We sought to identify electrophysiological targets responsible for the melatonin antiarrhythmic action and to explore whether melatonin receptor-dependent pathways or its antioxidative properties are essential for these effects. Ischemia was induced in anesthetized rats given a placebo, melatonin, and/or luzindole (MT1/MT2 melatonin receptor blocker), and epicardial mapping with reperfusion VT/VFs assessment was performed.
View Article and Find Full Text PDFBackground: Cardiovascular inflammation and oxidative stress are determining factors in high blood pressure and arrhythmias. Indole-3-carbinol is a cruciferous-derived phytochemical with potential anti-inflammatory and antioxidant effects. However, its implications on the modulation of cardiovascular inflammatory-oxidative markers are unknown.
View Article and Find Full Text PDFLight pollution is a global environmental issue that affects photosensitive organisms. For instance, several researchers have recognized melatonin suppression in humans as a direct cause of long-term exposure to high artificial light levels at night. Others have identified low melatonin levels as a risk factor for a higher prevalence of hormone-sensitive cancer.
View Article and Find Full Text PDFOxid Med Cell Longev
September 2021
Aging leads to structural and electrophysiological changes that increase the risk of postoperative atrial arrhythmias; however, noninvasive preoperative markers of atrial proarrhythmic conditions are still needed. This study is aimed at assessing whether interatrial dyssynchrony determined using two-dimensional speckle tracking echocardiography relates to proarrhythmic structural and functional remodeling. A cohort of 45 patients in sinus rhythm referred for cardiac surgery was evaluated by echocardiography and surface electrocardiogram the day before the intervention.
View Article and Find Full Text PDFCardiac connexin-43 (Cx43) creates gap junction channels (GJCs) at intercellular contacts and hemi-channels (HCs) at the peri-junctional plasma membrane and sarcolemmal caveolae/rafts compartments. GJCs are fundamental for the direct cardiac cell-to-cell transmission of electrical and molecular signals which ensures synchronous myocardial contraction. The HCs and structurally similar pannexin1 (Panx1) channels are active in stressful conditions.
View Article and Find Full Text PDFPharmacological concentrations of melatonin reduce reperfusion arrhythmias, but less is known about the antiarrhythmic protection of the physiological circadian rhythm of melatonin. Bilateral surgical removal of the superior cervical ganglia irreversibly suppresses melatonin rhythmicity. This study aimed to analyze the cardiac electrophysiological effects of the loss of melatonin circadian oscillation and the role played by myocardial melatonin membrane receptors, SERCA, TNFα, nitrotyrosine, TGFβ, K channels, and connexin 43.
View Article and Find Full Text PDFIschemic postconditioning (IPoC) reduces reperfusion arrhythmias but the antiarrhythmic mechanisms remain unknown. The aim of this study was to analyze IPoC electrophysiological effects and the role played by adenosine A, A and A receptors, protein kinase C, ATP-dependent potassium (K) channels, and connexin 43. IPoC reduced reperfusion arrhythmias (mainly sustained ventricular fibrillation) in isolated rat hearts, an effect associated with a transient delay in epicardial electrical activation, and with action potential shortening.
View Article and Find Full Text PDFHypokalemia prolongs the QRS and QT intervals, deteriorates intercellular coupling, and increases the risk for arrhythmia. Melatonin preserves gap junctions and shortens action potential as potential antiarrhythmic mechanisms, but its properties under hypokalemia remain unknown. We hypothesized that melatonin protects against low potassium-induced arrhythmias through the activation of its receptors, resulting in action potential shortening and connexin-43 preservation.
View Article and Find Full Text PDFLethal ventricular arrhythmias increase in patients with chronic kidney disease that suffer an acute coronary event. Chronic kidney disease induces myocardial remodeling, oxidative stress, and arrhythmogenesis. A manifestation of the relationship between kidney and heart is the concomitant reduction in vitamin D receptor (VDR) and the increase in angiotensin II receptor type 1 (AT ).
View Article and Find Full Text PDFPurpose Of Review: Here, we review the known relations between hypertension and obesity to inflammation and postulate the endogenous protective effect of melatonin and its potential as a therapeutic agent. We will describe the multiple effects of melatonin on blood pressure, adiposity, body weight, and focus on mitochondrial-related anti-inflammatory and antioxidant protective effects.
Recent Findings: Hypertension and obesity are usually associated with systemic and tissular inflammation.
J Cardiovasc Pharmacol Ther
March 2015
Cardiovascular disease is often associated with chronic kidney disease and vice versa; myocardial vitamin D receptors (VDRs) are among the probable links between the 2 disorders. The vitamin D receptor activator paricalcitol protects against some renal and cardiovascular complications. However, the structural and electrophysiological effects of myocardial vitamin D receptor modification and its impact on the response to ischemia-reperfusion are currently unknown.
View Article and Find Full Text PDFMelatonin reduces reperfusion arrhythmias when administered before coronary occlusion, but in the clinical context of acute coronary syndromes, most of the therapies are administered at the time of reperfusion. Patients frequently have physiological modifications that can reduce the response to therapeutic interventions. This work determined whether acute melatonin administration starting at the moment of reperfusion protects against ventricular arrhythmias in Langendorff-perfused hearts isolated from fructose-fed rats (FFR), a dietary model of metabolic syndrome, and from spontaneous hypertensive rats (SHR).
View Article and Find Full Text PDFReperfusion arrhythmias are currently attributed to ionic imbalance and oxidative stress. Tamoxifen is a potent antioxidant that also modulates some ionic transport pathways. In this work, we tried to correlate the electrophysiological effects of 1, 2, and 5 µM of tamoxifen with the incidence and severity of arrhythmias appearing on reperfusion after 10 minutes of coronary occlusion in isolated hearts from female rats.
View Article and Find Full Text PDF