Publications by authors named "Natalia I Dmitrieva"

Background And Aims: Population aging is fueling an epidemic of age-related chronic diseases. Managing risk factors and lifestyle interventions have proven effective in disease prevention. Epidemiological studies have linked markers of poor hydration with higher risk of chronic diseases and premature mortality.

View Article and Find Full Text PDF

Body water balance is determined by fundamental homeostatic mechanisms that maintain stable volume, osmolality and the composition of extracellular and intracellular fluids. Water balance is maintained by multiple mechanisms that continuously match water losses through urine, the skin, the gastrointestinal tract and respiration with water gains achieved through drinking, eating and metabolic water production. Hydration status is determined by the state of the water balance.

View Article and Find Full Text PDF

The increasing incidence of cardiovascular disease (CVD) has led to a significant ongoing need to address this surgically through coronary artery bypass grafting (CABG) and percutaneous coronary interventions (PCI). From this, there continues to be a substantial burden of mortality and morbidity due to complications arising from endothelial damage, resulting in restenosis. Whilst mast cells (MC) have been shown to have a causative role in atherosclerosis and other vascular diseases, including restenosis due to vein engraftment; here, we demonstrate their rapid response to arterial wire injury, recapitulating the endothelial damage seen in PCI procedures.

View Article and Find Full Text PDF

Background: It is known that some people age faster than others, some people live into old age disease-free, while others develop age-related chronic diseases. With a rapidly aging population and an emerging chronic diseases epidemic, finding mechanisms and implementing preventive measures that could slow down the aging process has become a new challenge for biomedical research and public health. In mice, lifelong water restriction shortens the lifespan and promotes degenerative changes.

View Article and Find Full Text PDF

Aims: With increasing prevalence of heart failure (HF) owing to the ageing population, identification of modifiable risk factors is important. In a mouse model, chronic hypohydration induced by lifelong water restriction promotes cardiac fibrosis. Hypohydration elevates serum sodium.

View Article and Find Full Text PDF

Human induced pluripotent stem cell (iPSC) technology has opened exciting opportunities for stem-cell-based therapy. However, its wide adoption is precluded by several challenges including low reprogramming efficiency and potential for malignant transformation. Better understanding of the molecular mechanisms of the changes that cells undergo during reprograming is needed to improve iPSCs generation efficiency and to increase confidence for their clinical use safety.

View Article and Find Full Text PDF

There are more than 7000 described rare diseases, most lacking specific treatment. Autosomal-dominant hyper-IgE syndrome (AD-HIES, also known as Job's syndrome) is caused by mutations in STAT3. These patients present with immunodeficiency accompanied by severe nonimmunological features, including skeletal, connective tissue, and vascular abnormalities, poor postinfection lung healing, and subsequent pulmonary failure.

View Article and Find Full Text PDF

RIPK1 is a key regulator of innate immune signalling pathways. To ensure an optimal inflammatory response, RIPK1 is regulated post-translationally by well-characterized ubiquitylation and phosphorylation events, as well as by caspase-8-mediated cleavage. The physiological relevance of this cleavage event remains unclear, although it is thought to inhibit activation of RIPK3 and necroptosis.

View Article and Find Full Text PDF

With increased life expectancy worldwide, there is an urgent need for improving preventive measures that delay the development of age-related degenerative diseases. Here, we report evidence from mouse and human studies that this goal can be achieved by maintaining optimal hydration throughout life. We demonstrate that restricting the amount of drinking water shortens mouse lifespan with no major warning signs up to 14 months of life, followed by sharp deterioration.

View Article and Find Full Text PDF

Objective: Serum sodium concentration is maintained by osmoregulation within normal range of 135 to 145 mmol/L. Previous analysis of data from the ARIC study (Atherosclerosis Risk in Communities) showed association of serum sodium with the 10-year risk scores of coronary heart disease and stroke. Current study evaluated the association of within-normal-range serum sodium with cardiovascular risk factors.

View Article and Find Full Text PDF

ACDC (arterial calcification due to deficiency of CD73) is an autosomal recessive disease resulting from loss-of-function mutations in NT5E, which encodes CD73, a 5'-ectonucleotidase that converts extracellular adenosine monophosphate to adenosine. ACDC patients display progressive calcification of lower extremity arteries, causing limb ischemia. Tissue-nonspecific alkaline phosphatase (TNAP), which converts pyrophosphate (PPi) to inorganic phosphate (Pi), and extracellular purine metabolism play important roles in other inherited forms of vascular calcification.

View Article and Find Full Text PDF

Cardiovascular diseases (CVDs) are a leading health problem worldwide. Epidemiologic studies link high salt intake and conditions predisposing to dehydration such as low water intake, diabetes and old age to increased risk of CVD. Previously, we demonstrated that elevation of extracellular sodium, which is a common consequence of these conditions, stimulates production by endothelial cells of clotting initiator, von Willebrand Factor, increases its level in blood and promotes thrombogenesis.

View Article and Find Full Text PDF

Hypercoagulability increases risk of thrombi that cause cardiovascular events. Here we identify plasma sodium concentration as a factor that modulates blood coagulability by affecting the production of von Willebrand factor (vWF), a key initiator of the clotting cascade. We find that elevation of salt over a range from the lower end of what is normal in blood to the level of severe hypernatremia reversibly increases vWF mRNA in endothelial cells in culture and the rate of vWF secretion from them.

View Article and Find Full Text PDF

High concentration of NaCl increases DNA breaks both in cell culture and in vivo. The breaks remain elevated as long as NaCl concentration remains high and are rapidly repaired when the concentration is lowered. The exact nature of the breaks, and their location, has not been entirely clear, and it has not been evident how cells survive, replicate, and maintain genome integrity in environments like the renal inner medulla in which cells are constantly exposed to high NaCl concentration.

View Article and Find Full Text PDF

Mre11 is a critical participant in upkeep of nuclear DNA, its repair, replication, meiosis, and maintenance of telomeres. The upkeep of mitochondrial DNA (mtDNA) is less well characterized, and whether Mre11 participates has been unknown. We previously found that high NaCl causes some of the Mre11 to leave the nucleus, but we did not then attempt to localize it within the cytoplasm.

View Article and Find Full Text PDF

Dehydration with aging is attributed to decreased urine concentrating ability and thirst. We further investigated by comparing urine concentration and water balance in 3, 18 and 27 month old mice, consuming equal amounts of water. During water restriction, 3 month old mice concentrate their urine sufficiently to maintain water balance (stable weight).

View Article and Find Full Text PDF

Background: Hypertonicity, such as induced by high NaCl, increases the activity of the transcription factor TonEBP/OREBP whose target genes increase osmoprotective organic osmolytes and heat shock proteins.

Methodology: We used mass spectrometry to analyze proteins that coimmunoprecipitate with TonEBP/OREBP in order to identify ones that might contribute to its high NaCl-induced activation.

Principal Findings: We identified 20 unique peptides from Mediator of DNA Damage Checkpoint 1 (MDC1) with high probability.

View Article and Find Full Text PDF

NaCl induces DNA breaks, thus leading to cellular senescence. Here we showed that Ku86 deficiency accelerated the high NaCl-induced cellular senescence. We find that 1) high NaCl induces rapid cellular senescence in Ku86 deficient(xrs5) cells, 2) Ku86 deficiency shortens lifespan of C.

View Article and Find Full Text PDF

We previously reported that, both in cell culture and in the renal inner medulla in vivo, elevating NaCl increased the number of DNA breaks, which persisted as long as NaCl remained high but were rapidly repaired when NaCl was lowered. Furthermore, those breaks did not induce the DNA repair protein gammaH2AX or cause activation of the MRN (Mre11, Rad50, Nbs1) complex. In contrast, others recently reported that high NaCl does induce gammaH2AX and MRN complex formation and concluded that these activities are associated with repair of the DNA (Sheen MR, Kim SW, Jung JY, Ahn JY, Rhee JG, Kwon HM, Woo SK.

View Article and Find Full Text PDF

High NaCl rapidly activates p38 MAPK by phosphorylating it, the phosphorylation presumably being regulated by a balance of kinases and phosphatases. Kinases are known, but the phosphatases are uncertain. Our initial purpose was to identify the phosphatases.

View Article and Find Full Text PDF

CD8-expressing cytotoxic T cell (CTL) interactions with APCs and helper T cells determine their function and ability to survive. In this study, we describe a novel interaction independent of Ag presentation between activated CTLs and bystander CD19-expressing B lymphocytes. Ag-stimulated CTLs serially engage autologous B lymphocytes through CD27/CD70 contact that promotes their survival and proliferation.

View Article and Find Full Text PDF

High extracellular NaCl was previously shown to increase the number of DNA breaks in mammalian cells in tissue culture, renal medullary cells in vivo, C. elegans and marine invertebrates. It was also shown to increase reactive oxygen species in renal cells, resulting in oxidation of proteins and DNA.

View Article and Find Full Text PDF

Cells in the renal inner medulla are normally exposed to extraordinarily high levels of NaCl and urea. The osmotic stress causes numerous perturbations because of the hypertonic effect of high NaCl and the direct denaturation of cellular macromolecules by high urea. High NaCl and urea elevate reactive oxygen species, cause cytoskeletal rearrangement, inhibit DNA replication and transcription, inhibit translation, depolarize mitochondria, and damage DNA and proteins.

View Article and Find Full Text PDF