Publications by authors named "Natalia Gomez-Ospina"

Mutations in lysosomal genes cause neurodegeneration and neurological lysosomal storage disorders (LSDs). Despite their essential role in brain homeostasis, the cell-type-specific composition and function of lysosomes remain poorly understood. Here, we report a quantitative protein atlas of the lysosome from mouse neurons, astrocytes, oligodendrocytes, and microglia.

View Article and Find Full Text PDF

Myhre syndrome (MS, MIM 139210) is a rare multisystemic disorder caused by recurrent pathogenic missense variants in SMAD4. The clinical features have been mainly documented in childhood and comprise variable neurocognitive development, recognizable craniofacial features, a short stature with a pseudo-muscular build, hearing loss, thickened skin, joint limitations, diverse cardiovascular and airway manifestations, and increased fibrosis often following trauma or surgery. In contrast, adults with MS are underreported obscuring potential clinical variability.

View Article and Find Full Text PDF

Hematopoietic stem cell transplantation can deliver therapeutic proteins to the central nervous system (CNS) through transplant-derived microglia-like cells. However, current conditioning approaches result in low and slow engraftment of transplanted cells in the CNS. Here we optimized a brain conditioning regimen that leads to rapid, robust, and persistent microglia replacement without adverse effects on neurobehavior or hematopoiesis.

View Article and Find Full Text PDF

Hematopoietic stem cell transplantation can deliver therapeutic proteins to the CNS through donor-derived hematopoietic cells that become microglia-like cells. However, using standard conditioning approaches, hematopoietic stem cell transplantation is currently limited by low and slow engraftment of microglia-like cells. We report an efficient conditioning regimen based on Busulfan and a six-day course of microglia depletion using the colony-stimulating factor receptor 1 inhibitor PLX3397.

View Article and Find Full Text PDF

Therapeutic applications of nuclease-based genome editing would benefit from improved methods for transgene integration via homology-directed repair (HDR). To improve HDR efficiency, we screened six small-molecule inhibitors of DNA-dependent protein kinase catalytic subunit (DNA-PKcs), a key protein in the alternative repair pathway of non-homologous end joining (NHEJ), which generates genomic insertions/deletions (INDELs). From this screen, we identified AZD7648 as the most potent compound.

View Article and Find Full Text PDF
Article Synopsis
  • Advances in molecular diagnostics have shown that certain genetic variants linked to neurodegenerative diseases can also cause severe neurodevelopmental disorders when inherited in a biallelic manner.* -
  • The study focuses on TOR1A-associated arthrogryposis multiplex congenita 5 (AMC5), revealing a range of clinical symptoms across a cohort of 57 individuals, including severe flexion contractures, developmental delays, and various motor issues.* -
  • The research identified a phenotypic spectrum from mild symptoms to severe disabilities, with a notable survival rate of 71% and a median mortality age of 1.2 months, mainly due to complications like respiratory failure.*
View Article and Find Full Text PDF

Purpose: To summarise the clinical, molecular and biochemical phenotype of mannosyl-oligosaccharide glucosidase-related congenital disorders of glycosylation (MOGS-CDG), which presents with variable clinical manifestations, and to analyse which clinical biochemical assay consistently supports diagnosis in individuals with bi-allelic variants in .

Methods: Phenotypic characterisation was performed through an international and multicentre collaboration. Genetic testing was done by exome sequencing and targeted arrays.

View Article and Find Full Text PDF

Autologous hematopoietic stem cell transplantation using genome-edited cells can become a definitive therapy for hematological and non-hematological disorders with neurological involvement. Proof-of-concept studies using human genome-edited hematopoietic stem cells have been hindered by the low efficiency of engraftment of the edited cells in the bone marrow and their modest efficacy in the CNS. To address these challenges, we tested a myeloablative conditioning regimen based on Busulfan in an immunocompromised model of mucopolysaccharidosis type 1.

View Article and Find Full Text PDF

WAC-related intellectual disability (ID) is a rare genetic condition characterized by a spectrum of neurodevelopmental disorders of varying severity, including global developmental delay (GDD), ID, and autism spectrum disorder. Here, we describe five affected individuals, age range 9-20 years, and provide proof of pathogenicity of a novel splicing variant. All individuals presented with GDD, some degree of ID, and variable dysmorphism.

View Article and Find Full Text PDF

Gaucher disease is a lysosomal storage disorder caused by insufficient glucocerebrosidase activity. Its hallmark manifestations are attributed to infiltration and inflammation by macrophages. Current therapies for Gaucher disease include life-long intravenous administration of recombinant glucocerebrosidase and orally-available glucosylceramide synthase inhibitors.

View Article and Find Full Text PDF

Elevated blood ammonia (hyperammonemia) may cause delirium, brain damage, and even death. Effective treatments exist, but preventing permanent neurological sequelae requires rapid, accurate, and serial measurements of blood ammonia. Standard methods require volumes of 1 to 3 mL, centrifugation to isolate plasma, and a turn-around time of 2 h.

View Article and Find Full Text PDF

Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is a fatal disorder characterized by progressive gastrointestinal dysmotility, peripheral neuropathy, leukoencephalopathy, skeletal myopathy, ophthalmoparesis, and ptosis. MNGIE stems from deficient thymidine phosphorylase activity (TP) leading to toxic elevations of plasma thymidine. Hematopoietic stem cell transplant (HSCT) restores TP activity and halts disease progression but has high transplant-related morbidity and mortality.

View Article and Find Full Text PDF

Genome editing holds the promise of one-off and potentially curative therapies for many patients with genetic diseases. This is especially true for patients affected by mucopolysaccharidoses as the disease pathophysiology is amenable to correction using multiple approaches. Ex vivo and in vivo genome editing platforms have been tested primarily on MSPI and MPSII, with in vivo approaches having reached clinical testing in both diseases.

View Article and Find Full Text PDF

Lysosomal enzyme deficiencies comprise a large group of genetic disorders that generally lack effective treatments. A potential treatment approach is to engineer the patient's own hematopoietic system to express high levels of the deficient enzyme, thereby correcting the biochemical defect and halting disease progression. Here, we present an efficient ex vivo genome editing approach using CRISPR-Cas9 that targets the lysosomal enzyme iduronidase to the CCR5 safe harbor locus in human CD34+ hematopoietic stem and progenitor cells.

View Article and Find Full Text PDF

Biomedical scientists aim to contribute to further understanding of disease pathogenesis and to develop new diagnostic and therapeutic tools that relieve disease burden. Yet the majority of biomedical scientists do not develop their academic career or professional identity as "translational scientists," and are not actively involved in the continuum from scientific concept to development of new strategies that change medical practice. The collaborative nature of translational medicine and the lengthy process of bringing innovative findings from bench to bedside conflict with established pathways of building a career in academia.

View Article and Find Full Text PDF

Purpose: Haploinsufficiency of DYRK1A causes a recognizable clinical syndrome. The goal of this paper is to investigate congenital anomalies of the kidney and urinary tract (CAKUT) and genital defects (GD) in patients with DYRK1A variants.

Methods: A large database of clinical exome sequencing (ES) was queried for de novo DYRK1A variants and CAKUT/GD phenotypes were characterized.

View Article and Find Full Text PDF

Human neural stem cells (NSCs) offer therapeutic potential for neurodegenerative diseases, such as inherited monogenic nervous system disorders, and neural injuries. Gene editing in NSCs (GE-NSCs) could enhance their therapeutic potential. We show that NSCs are amenable to gene targeting at multiple loci using Cas9 mRNA with synthetic chemically modified guide RNAs along with DNA donor templates.

View Article and Find Full Text PDF

The CRISPR-Cas9 system is a powerful tool for genome editing, which allows the precise modification of specific DNA sequences. Many efforts are underway to use the CRISPR-Cas9 system to therapeutically correct human genetic diseases. The most widely used orthologs of Cas9 are derived from Staphylococcus aureus and Streptococcus pyogenes.

View Article and Find Full Text PDF