Publications by authors named "Natalia G Kolosova"

The common cold, which is mostly caused by respiratory viruses and clinically represented by the symptoms of acute respiratory viral infections (ARVI) with mainly upper respiratory tract involvement, is an important problem in pediatric practice. Due to the high prevalence, socio-economic burden, and lack of effective prevention measures (except for influenza and, partially, RSV infection), ARVI require strong medical attention. The purpose of this descriptive literature review was to analyze the current practical approaches to the treatment of ARVI to facilitate the choice of therapy in routine practice.

View Article and Find Full Text PDF

Electron microscopic study of cardiomyocytes taken from healthy Wistar and OXYS rats and naked mole rats () revealed mitochondria in nuclei that lacked part of the nuclear envelope. The direct interaction of mitochondria with nucleoplasm is shown. The statistical analysis of the occurrence of mitochondria in cardiomyocyte nuclei showed that the percentage of nuclei with mitochondria was roughly around 1%, and did not show age and species dependency.

View Article and Find Full Text PDF
Article Synopsis
  • The research focuses on understanding the genetic factors behind age-related neurodegenerative disorders by studying the OXYS rat model, known for accelerated senescence and specific eye conditions.
  • Previous findings identified two quantitative trait loci (QTLs) linked to cataracts, retinopathy, and behavioral issues in the OXYS strain and its congenics, but unanswered questions remained about the relationship between these genetic components and neurodegenerative processes.
  • The study discovered that while the congenic strains showed high susceptibility to eye conditions, they did not display clear signs of brain degeneration, suggesting either a lack of specific susceptibility genes in the congenics or a significant influence of genetic background on how these diseases manifest.
View Article and Find Full Text PDF

Background: Etiology of complex disorders, such as cataract and neurodegenerative diseases including age-related macular degeneration (AMD), remains poorly understood due to the paucity of animal models, fully replicating the human disease. Previously, two quantitative trait loci (QTLs) associated with early cataract, AMD-like retinopathy, and some behavioral aberrations in senescence-accelerated OXYS rats were uncovered on chromosome 1 in a cross between OXYS and WAG rats. To confirm the findings, we generated interval-specific congenic strains, WAG/OXYS-1.

View Article and Find Full Text PDF

Rheohaemapheresis aims to normalize major rheological parameters and is used to treat patients with dry age-related macular degeneration (AMD). While effective, this approach is invasive and requires specially trained personnel. Therefore, the search for novel effective compounds with hemorheological properties that can be taken orally to treat AMD is justified.

View Article and Find Full Text PDF

Pathogenesis of age-related macular degeneration (AMD), the leading cause of vision loss in the elderly, remains poorly understood due to the paucity of animal models that fully replicate the human disease. Recently, we showed that senescence-accelerated OXYS rats develop a retinopathy similar to human AMD. To identify alterations in response to normal aging and progression of AMD-like retinopathy, we compared gene expression profiles of retina from 3- and 18-mo-old OXYS and control Wistar rats by means of high-throughput RNA sequencing (RNA-Seq).

View Article and Find Full Text PDF

Age-related macular degeneration (AMD) and cataract are common age-related diseases in humans. Previously we showed that senescence-accelerated OXYS rats develop retinopathy and cataract, which are comparable to human AMD and senile cataract. Here we focused on the identification of quantitative trait loci (QTLs), which affect early-onset cataract and retinopathy in OXYS rats, using F2 hybrids bred by a reciprocal cross (OXYS×WAG and WAG×OXYS).

View Article and Find Full Text PDF

Unlabelled: The incidence of age-related macular degeneration (AMD), the main cause of blindness in older patients in the developed countries, is increasing with the ageing population. At present there is no effective treatment for the prevailing geographic atrophy, dry AMD, whereas antiangiogenic therapies successful used in managing the wet form of AMD. Recently we showed that mitochondria-targeted antioxidant plastoquinonyl-decyl-triphenylphosphonium (SkQ1) is able to prevent the development and moreover caused regression of pre-existing signs of the retinopathy in OXYS rats, an animal model of AMD.

View Article and Find Full Text PDF

Pathogenesis of age-related macular degeneration (AMD), the leading cause of blindness in the world, remains poorly understood. This makes it necessary to create animal models for studying AMD pathogenesis and to design new therapeutic approaches. Here we showed that retinopathy in OXYS rats is similar to human AMD according to clinical signs, morphology, and vascular endothelium growth factor (VEGF) and pigment epithelium-derived factor (PEDF) genes expression.

View Article and Find Full Text PDF

One of the most striking changes during mammal aging is a progressive involution of the thymus, associated with an increase in susceptibility to infections, autoimmune diseases and cancer. In order to delay age-related processes, we have developed mitochondria-targeted antioxidant plastoquinonyl decyltriphenyl phosphonium (SkQ1). Here we report that, at low doses, SkQ1 (250 nmol/kg per day) inhibited age-dependent involution of the thymus in normal (Wistar) and senescence-prone (OXYS) rats.

View Article and Find Full Text PDF