Publications by authors named "Natalia G Armando"

Hippocampal neurons exhibit activation of both the conventional transmembrane adenylyl cyclases (tmACs) and the non-canonical soluble adenylyl cyclase (sAC) as sources of cyclic AMP (cAMP). These two cAMP sources play crucial roles in mediating signaling pathways downstream of CRHR1 in neuronal and neuroendocrine contexts. In this study, we investigate the involvement of both cAMP sources in the molecular mechanisms triggered by CRHR2α.

View Article and Find Full Text PDF
Article Synopsis
  • Circular RNAs (circRNAs) are noncoding RNAs, and many have unknown biological functions due to challenges in studying them.
  • This study specifically investigated circTulp4, a circRNA found in the brain, by creating a mouse model that lacks circTulp4 while preserving normal mRNA and protein levels.
  • The findings show that circTulp4 is essential for proper brain function, influencing neurotransmission and responses to negative stimuli, highlighting the importance of circRNAs in neural regulation.
View Article and Find Full Text PDF

Neddylation has been implicated in various cellular pathways and in the pathophysiology of numerous diseases. We identified four individuals with bi-allelic variants in NAE1, which encodes the neddylation E1 enzyme. Pathogenicity was supported by decreased NAE1 abundance and overlapping clinical and cellular phenotypes.

View Article and Find Full Text PDF

The development of live-cell sensors for real-time measurement of signaling responses, with improved spatial and temporal resolution with respect to classical biochemical methods, has changed our understanding of cellular signaling. Examination of cAMP generation downstream activated GPCRs has shown that signaling responses can be short-lived (generated from the cell surface) or prolonged after receptor internalization. Class B secretin-like Corticotropin-releasing hormone receptor 1 (CRHR1) is a key player in stress pathophysiology.

View Article and Find Full Text PDF

Class B G protein-coupled receptors (GPCRs) are involved in a variety of human pathophysiological states. These groups of membrane receptors are less studied than class A GPCRs due to the lack of structural information, delayed small molecule drug discovery, and scarce fluorescence detection tools available. The class B corticotropin-releasing hormone type 1 receptor (CRHR1) is a key player in the stress response whose dysregulation is critically involved in stress-related disorders: psychiatric conditions (i.

View Article and Find Full Text PDF

Corticotropin-releasing hormone (CRH) is a key player of basal and stress-activated responses in the hypothalamic-pituitary-adrenal axis (HPA) and in extrahypothalamic circuits, where it functions as a neuromodulator to orchestrate humoral and behavioral adaptive responses to stress. This review describes molecular components and cellular mechanisms involved in CRH signaling downstream of its G protein-coupled receptors (GPCRs) CRHR1 and CRHR2 and summarizes recent findings that challenge the classical view of GPCR signaling and impact on our understanding of CRHRs function. Special emphasis is placed on recent studies of CRH signaling that revealed new mechanistic aspects of cAMP generation and ERK1/2 activation in physiologically relevant contexts of the neurohormone action.

View Article and Find Full Text PDF

Corticotropin-releasing hormone receptor 1 (CRHR1) activates the atypical soluble adenylyl cyclase (sAC) in addition to transmembrane adenylyl cyclases (tmACs). Both cAMP sources were shown to be required for the phosphorylation of ERK1/2 triggered by activated G protein coupled receptor (GPCR) CRHR1 in neuronal and neuroendocrine contexts. Here, we show that activated CRHR1 promotes growth arrest and neurite elongation in neuronal hippocampal cells (HT22-CRHR1 cells).

View Article and Find Full Text PDF