Publications by authors named "Natalia Demeshkina"

Translation of the genetic code into proteins is realized through repetitions of synchronous translocation of messenger RNA (mRNA) and transfer RNAs (tRNA) through the ribosome. In eukaryotes translocation is ensured by elongation factor 2 (eEF2), which catalyses the process and actively contributes to its accuracy. Although numerous studies point to critical roles for both the conserved eukaryotic posttranslational modification diphthamide in eEF2 and tRNA modifications in supporting the accuracy of translocation, detailed molecular mechanisms describing their specific functions are poorly understood.

View Article and Find Full Text PDF

DHX36 is a DEAH-box helicase that resolves parallel G-quadruplex structures formed in DNA and RNA. The recent co-crystal structure of DHX36 bound G4-DNA revealed an intimate contact, but did not address the role of ATP hydrolysis in G4 resolving activity. Here, we demonstrate that unlike on G4-DNA, DHX36 displays ATP-independent unfolding of G4-RNA followed by ATP-dependent refolding, generating a highly asymmetric pattern of activity.

View Article and Find Full Text PDF

Guanine-rich nucleic acid sequences challenge the replication, transcription, and translation machinery by spontaneously folding into G-quadruplexes, the unfolding of which requires forces greater than most polymerases can exert. Eukaryotic cells contain numerous helicases that can unfold G-quadruplexes . The molecular basis of the recognition and unfolding of G-quadruplexes by helicases remains poorly understood.

View Article and Find Full Text PDF
Article Synopsis
  • Protein biosynthesis involves the movement of mRNA and tRNAs on the ribosome, which is crucial for translating genetic information.
  • In eukaryotes, this process is facilitated by a G-protein called elongation factor 2 (eEF2), which has a specific modification known as diphthamide.
  • Recent cryo-electron microscopy studies of yeast ribosome complexes reveal how diphthamide contributes to translation fidelity during different states of GTP-hydrolysis.
View Article and Find Full Text PDF

Genetically encoded fluorescent protein tags have revolutionized proteome studies, whereas the lack of intrinsically fluorescent RNAs has hindered transcriptome exploration. Among several RNA-fluorophore complexes that potentially address this problem, RNA Mango has an exceptionally high affinity for its thiazole orange (TO)-derived fluorophore, TO1-Biotin (K ∼3 nM), and, in complex with related ligands, it is one of the most redshifted fluorescent macromolecular tags known. To elucidate how this small aptamer exhibits such properties, which make it well suited for studying low-copy cellular RNAs, we determined its 1.

View Article and Find Full Text PDF

The fidelity of translation depends strongly on the selection of the correct aminoacyl-tRNA that is complementary to the mRNA codon present in the ribosomal decoding center. The ribosome occasionally makes mistakes by selecting the wrong substrate from the pool of aminoacyl-tRNAs. Here, we summarize recent structural advances that may help to clarify the origin of missense errors that occur during decoding.

View Article and Find Full Text PDF

Posttranscriptional modifications at the wobble position of transfer RNAs play a substantial role in deciphering the degenerate genetic code on the ribosome. The number and variety of modifications suggest different mechanisms of action during messenger RNA decoding, of which only a few were described so far. Here, on the basis of several 70S ribosome complex X-ray structures, we demonstrate how Escherichia coli tRNA(Lys)(UUU) with hypermodified 5-methylaminomethyl-2-thiouridine (mnm(5)s(2)U) at the wobble position discriminates between cognate codons AAA and AAG, and near-cognate stop codon UAA or isoleucine codon AUA, with which it forms pyrimidine-pyrimidine mismatches.

View Article and Find Full Text PDF

The decoding of mRNA on the ribosome is the least accurate process during genetic information transfer. Here we propose a unified decoding mechanism based on 11 high-resolution X-ray structures of the 70S ribosome that explains the occurrence of missense errors during translation. We determined ribosome structures in rare states where incorrect tRNAs were incorporated into the peptidyl-tRNA-binding site.

View Article and Find Full Text PDF

Pioneer crystallographic studies of the isolated 30S ribosomal subunit provided the first structural insights into the decoding process. Recently, new crystallographic data on full 70S ribosomes with mRNA and tRNAs have shown that the formation of the tight decoding centre is ensured by conformational rearrangement of the 30S subunit (domain closure), which is identical for cognate or near-cognate tRNA. When a G·U forms at the first or second codon-anticodon positions (near-cognate tRNA), the ribosomal decoding centre forces the adoption of Watson-Crick G·C-like geometry rather than that of the expected Watson-Crick wobble pair.

View Article and Find Full Text PDF

During protein synthesis, the ribosome accurately selects transfer RNAs (tRNAs) in accordance with the messenger RNA (mRNA) triplet in the decoding centre. tRNA selection is initiated by elongation factor Tu, which delivers tRNA to the aminoacyl tRNA-binding site (A site) and hydrolyses GTP upon establishing codon-anticodon interactions in the decoding centre. At the following proofreading step the ribosome re-examines the tRNA and rejects it if it does not match the A codon.

View Article and Find Full Text PDF

Discrimination of tRNA on the ribosome occurs in two consecutive steps: initial selection and proofreading. Here we propose a proofreading mechanism based on comparison of crystal structures of the 70S ribosome with an empty A site or with the A site occupied by uncharged cognate or near-cognate tRNA. We observe that ribosomal proteins S13, S19, L16, L25, L27 and L31 are actively involved in the proofreading of tRNA.

View Article and Find Full Text PDF

One key question in protein biosynthesis is how the ribosome couples mRNA and tRNA movements to prevent disruption of weak codon-anticodon interactions and loss of the translational reading frame during translocation. Here we report the complete path of mRNA on the 70S ribosome at the atomic level (3.1-A resolution), and we show that one of the conformational rearrangements that occurs upon transition from initiation to elongation is a narrowing of the downstream mRNA tunnel.

View Article and Find Full Text PDF

Recent collection of high-resolution crystal structures of the 70S ribosome with mRNA and tRNA substrates enhances our knowledge of protein synthesis principles. A novel network of interactions between the ribosome in the elongation state and mRNA downstream from the A codon suggests that mRNA is stabilized and aligned at the entrance to the decoding center. The X-ray studies clarify how natural modifications of tRNA are involved in the stabilization of the codon-anticodon interactions, prevention of frame-shifting and also expansion of the decoding capacity of tRNAs.

View Article and Find Full Text PDF

Ribosomes must dissociate into subunits in order to begin protein biosynthesis. The enzymes that catalyze this fundamental process in eukaryotes remained unknown. Here, we demonstrate that eukaryotic translocase, eEF2, which catalyzes peptide elongation in the presence of GTP, dissociates yeast 80S ribosomes into subunits in the presence of ATP but not GTP or other nucleoside triphosphates.

View Article and Find Full Text PDF

Ribosome recycling, the last step in translation, is now accepted as an essential process for prokaryotes. In 2005, three laboratories showed that ribosome-recycling factor (RRF) and elongation factor G (EF-G) cause dissociation of ribosomes into subunits, solving the long-standing problem of how this essential step of translation occurs. However, there remains ongoing controversy regarding the other actions of RRF and EF-G during ribosome recycling.

View Article and Find Full Text PDF

This study is centred upon an important biological problem concerning the structural organization of mammalian ribosomes that cannot be studied by X-ray analysis because 80S ribosome crystals are still unavailable. Here, positioning of the mRNA on 80S ribosomes was studied using mRNA analogues containing the perfluorophenylazide cross-linker on either the guanosine or an uridine residue. The modified nucleotides were directed to positions from -9 to +6 with respect to the first nucleotide of the P site bound codon by a tRNA cognate to the triplet targeted to the P site.

View Article and Find Full Text PDF

Positioning of each nucleotide of the E site and the P site bound codons with respect to the 18S rRNA on the human ribosome was studied by cross-linking with mRNA analogs, derivatives of the hexaribonucleotide UUUGUU (comprising Phe and Val codons) that carried a perfluorophenylazide group on the second or the third uracil, and a derivative of the dodecaribonucleotide UUAGUAUUUAUU with a similar group on the guanine residue. The location of the modified nucleotides at any mRNA position from -3 to +3 (position +1 corresponds to the 5' nucleotide of the P site bound codon) was adjusted by the cognate tRNAs. A modified uridine at positions from -1 to +3 cross-linked to nucleotide G1207 of the 18S rRNA, and to nucleotide G961 when it was in position -2.

View Article and Find Full Text PDF