Publications by authors named "Natalia Dave"

Unlabelled: Methylation of histone H3 lysine 4 is linked to active transcription and can be removed by LSD1 or the JmjC domain-containing proteins by amino-oxidation or hydroxylation, respectively. Here we describe that its deamination can be catalyzed by lysyl oxidase-like 2 protein (LOXL2), presenting an unconventional chemical mechanism for H3K4 modification. Infrared spectroscopy and mass spectrometry analyses demonstrated that recombinant LOXL2 specifically deaminates trimethylated H3K4.

View Article and Find Full Text PDF

Notch activation in aortic endothelial cells (ECs) takes place at embryonic stages during cardiac valve formation and induces endothelial-to-mesenchymal transition (EndMT). Using aortic ECs, we show here that active Notch expression promotes EndMT, resulting in downregulation of vascular endothelial cadherin (VE-cadherin) and upregulation of mesenchymal genes such as those for fibronectin and Snail1/2. In these cells, transforming growth factor β1 exacerbates Notch effects by increasing Snail1 and fibronectin activation.

View Article and Find Full Text PDF

Methylation of lysine 4 (K4) within histone H3 has been linked to active transcription and is removed by LSD1 and the JmjC domain-containing proteins by amino-oxidation or hydroxylation, respectively. Here, we describe the deamination catalyzed by Lysyl oxidase-like 2 protein (LOXL2) as an unconventional chemical mechanism for H3K4 modification. Infrared spectroscopy and mass spectrometry analyses demonstrated that recombinant LOXL2 specifically deaminates trimethylated H3K4.

View Article and Find Full Text PDF

p120-catenin is an E-cadherin-associated protein that modulates E-cadherin function and stability. In response to Wnt3a, p120-catenin is phosphorylated at Ser268 and Ser269, disrupting its interaction with E-cadherin. Here, we describe that Wnt-induced p120-catenin phosphorylation at Ser268 and Ser269 also enhances its binding to the transcriptional factor Kaiso, preventing Kaiso-mediated inhibition of the β-catenin-Tcf-4 transcriptional complex.

View Article and Find Full Text PDF

Snail1 and Zeb1 are E-cadherin-transcriptional repressors induced during epithelial mesenchymal transition (EMT). In this article we have analyzed the factors controlling Zeb1 expression during EMT. In NMuMG cells treated with TGF-β, Snail1 RNA and protein are induced 1 h after addition of the cytokine preceding Zeb1 up-regulation that requires 6-8 h.

View Article and Find Full Text PDF

The transcriptional factor Snail1 is a repressor of E-cadherin (CDH1) gene expression essential for triggering epithelial-mesenchymal transition. Snail1 represses CDH1, directly binding its promoter and inducing the synthesis of the Zeb1 repressor. In this article, we show that repression of CDH1 by Snail1, but not by Zeb1, is dependent on the activity of Polycomb repressive complex 2 (PRC2).

View Article and Find Full Text PDF

The product of the Snail1 gene is a transcriptional repressor required for triggering the epithelial-to-mesenchymal transition. Furthermore, ectopic expression of Snail1 in epithelial cells promotes resistance to apoptosis. In this study, we demonstrate that this resistance to gamma radiation-induced apoptosis caused by Snail1 is associated with the inhibition of PTEN phosphatase.

View Article and Find Full Text PDF

Analysis of infrared polarized absorbance spectra and linear dichroism spectra of reconstituted melibiose permease from Escherichia coli shows that the oriented structures correspond mainly to tilted transmembrane alpha-helices, forming an average angle of approximately 26 degrees with the membrane normal in substrate-free medium. Examination of the deconvoluted linear dichroism spectra in H(2)O and D(2)O makes apparent two populations of alpha-helices differing by their tilt angle (helix types I and II). Moreover, the average helical tilt angle significantly varies upon substrate binding: it is increased upon Na(+) binding, whereas it decreases upon subsequent melibiose binding in the presence of Na(+).

View Article and Find Full Text PDF

The product of Snail1 gene is a transcriptional repressor of E-cadherin expression and an inductor of the epithelial-mesenchymal transition in several epithelial tumour cell lines. Transcription of Snail1 is induced when epithelial cells are forced to acquire a mesenchymal phenotype. In this work we demonstrate that Snail1 protein limits its own expression: Snail1 binds to an E-box present in its promoter (at -146 with respect to the transcription start) and represses its activity.

View Article and Find Full Text PDF

The accessibility of Escherichia coli melibiose permease to aqueous solvent was studied following hydrogen-deuterium exchange kinetics monitored by attenuated total reflection-Fourier transform infrared spectroscopy under four distinct conditions where MelB forms different complexes with its substrates (H(+), Na(+), melibiose). Analysis of the amide II band upon (2)H(2)O exposure discloses a significant sugar protection of the protein against aqueous solvent, resulting in an 8% less exchange of the corresponding H(+)*melibiose*MelB complex compared with the protein in the absence of sugar. Investigation of the amide I exchange reveals clear substrate effects on beta-sheet accessibility, with the complex H(+)*melibiose*MelB being the most protected state against exchange, followed by Na(+)*melibiose*MelB.

View Article and Find Full Text PDF