Diagnostics (Basel)
September 2024
: The most important phase in the endometrial pathologies diagnostics is the histological examination of tissue biopsies obtained under visual hysteroscopic control. However, the unclear visual diagnostics characteristics of subtle focal endometrial pathologies often lead to selection errors regarding suspicious endometrial lesions and to a subsequent false pathological diagnosis/underestimation of precancer or early-stage cancer. : In this study, we investigate the potential of Multimodal Optical Coherence Tomography (MM OCT) to verify suspicious endometrial lesion regions before biopsy collection.
View Article and Find Full Text PDFWhile cryotherapy is one of the traditional ways to reduce postoperative complications in maxillofacial surgery, the cooling degree is not regulated in most cases and the achieved effect is not properly controlled. Therefore, to develop optimal cooling modes, we propose to study the buccal vascular response to cooling, which has not been previously shown. To evaluate the effect of cooling, we analyzed vessel networks using optical coherence tomography angiography (OCT-A).
View Article and Find Full Text PDFThe presence of molecular mutations in colorectal cancer (CRC) is a decisive factor in selecting the most effective first-line therapy. However, molecular analysis is routinely performed only in a limited number of patients with remote metastases. We propose to use tissue stiffness as a marker of the presence of molecular mutations in CRC samples.
View Article and Find Full Text PDFCurrently, optical biopsy technologies are being developed for rapid and label-free visualization of biological tissue with micrometer-level resolution. They can play an important role in breast-conserving surgery guidance, detection of residual cancer cells, and targeted histological analysis. For solving these problems, compression optical coherence elastography (C-OCE) demonstrated impressive results based on differences in the elasticity of different tissue constituents.
View Article and Find Full Text PDFIdentifying the precise topography of cancer for targeted biopsy in colonoscopic examination is a challenge in current diagnostic practice. For the first time we demonstrate the use of compression optical coherence elastography (C-OCE) technology as a new functional OCT modality for differentiating between cancerous and non-cancerous tissues in colon and detecting their morphological features on the basis of measurement of tissue elastic properties. The method uses pre-determined stiffness values (Young's modulus) to distinguish between different morphological structures of normal (mucosa and submucosa), benign tumor (adenoma) and malignant tumor tissue (including cancer cells, gland-like structures, cribriform gland-like structures, stromal fibers, extracellular mucin).
View Article and Find Full Text PDFIntroduction: To improve the quality of brain tumor resections, it is important to differentiate zones with myelinated fibers destruction from tumor tissue and normal white matter. Optical coherence tomography (OCT) is a promising tool for brain tissue visualization and in the present study, we demonstrate the ability of cross-polarization (CP) OCT to detect damaged white matter and differentiate it from normal and tumor tissues.
Materials And Methods: The study was performed on 215 samples of brain tissue obtained from 57 patients with brain tumors.
The aims of this study are (i) to compare ultrasound strain elastography (US-SE) and compression optical coherence elastography (C-OCE) in characterization of elastically linear phantoms, (ii) to evaluate factors that can cause discrepancy between the results of the two elastographic techniques in application to real tissues, and (iii) to compare the results of US-SE and C-OCE in the differentiation of benign and malignant breast lesions. On 22 patients, we first used standard US-SE for assessment of breast cancer before and then after the lesion excision C-OCE was applied for intraoperative visualization of margins of the tumors and assessment of their type/grade using fresh lumpectomy specimens. For verification, the tumor grades and subtypes were determined histologically.
View Article and Find Full Text PDFIn this article, we offer a novel classification of progressive changes in the connective tissue of dermis in vulvar lichen sclerosus (VLS) relying on quantitative assessment of the second harmonic generation (SHG) signal received from formalin fixed and deparaffinized tissue sections. We formulate criteria for distinguishing four degrees of VLS development: Initial-Mild-Moderate-Severe. Five quantitative characteristics (length and thickness type I Collagen fibers, Mean SHG signal intensity, Skewness and Coherence SHG signal) are used to describe the sequential degradation of connective tissue (changes in the structure, orientation, shape and density of collagen fibers) up to the formation of specific homogeneous masses.
View Article and Find Full Text PDFSoft biological tissues, breast cancer tissues in particular, often manifest pronounced nonlinear elasticity, i.e., strong dependence of their Young’s modulus on the applied stress.
View Article and Find Full Text PDFA pilot post-mortem study identifies a strong correlation between the attenuation coefficient estimated from the OCT data and some morphological features of the sample, namely the number of nuclei in the field of view of the histological image and the fiber structural parameter introduced in the study to quantify the difference in the myelinated fibers arrangements. The morphological features were identified from the histopathological images of the sample taken from the same locations as the OCT images and stained with the immunohistochemical (IHC) staining specific to the myelin. It was shown that the linear regression of the IHC quantitative characteristics allows adequate prediction of the attenuation coefficient of the sample.
View Article and Find Full Text PDFMultimodal optical coherent tomography grows popularity with researchers and clinicians over the past decade. One of the modalities is lymphangiography, which allows visualization of the lymphatic vessel networks within optical coherence tomography (OCT) imaging volume. In the present study, it is shown that lymphatic vessel visualization obtained from the depth-resolved attenuation coefficient distributions, corrected for the noise, shows improved contrast and detail in comparison with previously proposed approaches.
View Article and Find Full Text PDFIn this study multiphoton tomography, based on second harmonic generation (SHG), and two-photon-excited fluorescence (TPEF) was used to visualize both the extracellular matrix and tumor cells in different morphological and molecular subtypes of human breast cancer. It was shown, that quantified assessment of the SHG based imaging data has great potential to reveal differences of collagen quantity, organization and uniformity in both low- and highly- aggressive invasive breast cancers. The values of quantity and uniformity of the collagen fibers distribution were significantly higher in low-aggressive breast cancer compared to the highly-aggressive subtypes, while the value representing collagen organization was lower in the former type.
View Article and Find Full Text PDFThe possibility to assess molecular-biological and morphological features of particular breast cancer types can improve the precision of resection margin detection and enable accurate determining of the tumor aggressiveness, which is important for treatment selection. To enable reliable differentiation of breast-cancer subtypes and evaluation of resection margin, without performing conventional histological procedures, here we apply cross-polarization optical coherence tomography (CP-OCT) and compare it with a novel variant of compressional optical coherence elastography (C-OCE) in terms of the diagnostic accuracy (Ac) with histological verification. The study used 70 excised breast cancer specimens with different morphological structure and molecular status (Luminal A, Luminal B, Her2/Neo+, non-luminal and triple-negative cancer).
View Article and Find Full Text PDFWe present a non-invasive (albeit contact) method based on Optical Coherence Elastography (OCE) enabling the in vivo segmentation of morphological tissue constituents, in particular, monitoring of morphological alterations during both tumor development and its response to therapies. The method uses compressional OCE to reconstruct tissue stiffness map as the first step. Then the OCE-image is divided into regions, for which the Young's modulus (stiffness) falls in specific ranges corresponding to the morphological constituents to be discriminated.
View Article and Find Full Text PDFEmerging methods of anti-tumor therapies require new approaches to tumor response evaluation, especially enabling label-free diagnostics and utilization. Here, to assess the tumor early reaction and predict its long-term response, for the first time we apply in combination the recently developed OCT extensions - optical coherence angiography (OCA) and compressional optical coherence elastography (OCE), thus enabling complementary functional/microstructural tumor characterization. We study two vascular-targeted therapies of different types, (1) anti-angiogenic chemotherapy (ChT) and (2) photodynamic therapy (PDT), aimed to indirectly kill tumor cells through blood supply injury.
View Article and Find Full Text PDFThe methods used for digital processing of optical coherence tomography (OCT) and crosspolarization (CP) OCT images are focused on improving the contrast ratio of native structural OCT images. Such advances are particularly important for the intraoperative detection of glioma margins where the visual assessment of OCT images can be difficult and lead to errors. The aim of the study was to investigate the application of optical coefficients obtained from CP OCT data for the differentiation of glial tumorous tissue from a normal brain.
View Article and Find Full Text PDFApplication of compressional optical coherence elastography (OCE) for delineation of tumor and peri-tumoral tissue with simultaneous assessment of morphological/molecular subtypes of breast cancer is reported. The approach is based on the ability of OCE to quantitatively visualize stiffness of studied samples and then to perform a kind of OCE-based biopsy by analyzing elastographic B-scans that have sizes ~several millimeters similarly to bioptates used for "gold-standard" histological examinations. The method relies on identification of several main tissue constituents differing in their stiffness in the OCE scans.
View Article and Find Full Text PDFThis paper considers valuable visual assessment criteria for distinguishing between tumorous and non-tumorous tissues, intraoperatively, using cross-polarization OCT (CP OCT)-OCT with a functional extension, that enables detection of the polarization properties of the tissues in addition to their conventional light scattering. The study was performed on 176 human specimens obtained from 30 glioma patients. To measure the degree to which the typical parameters of CP OCT images can be matched to the actual histology, 100 images of tumors and white matter were selected for visual analysis to be undertaken by three "single-blinded" investigators.
View Article and Find Full Text PDFOptical coherence tomography (OCT) is a promising method for detecting cancer margins during tumor resection. This study focused on differentiating tumorous from nontumorous tissues in human brain tissues using cross-polarization OCT (CP OCT). The study was performed on fresh ex vivo human brain tissues from 30 patients with high- and low-grade gliomas.
View Article and Find Full Text PDFA combination of approaches to the image analysis in cross-polarization optical coherence tomography (CP OCT) and high-resolution imaging by nonlinear microscopy and atomic force microscopy (AFM) at the different stages of atherosclerotic plaque development is studied. This combination allowed us to qualitatively and quantitatively assess the disorganization of collagen in the atherosclerotic arterial tissue (reduction and increase of CP backscatter), at the fiber (change of the geometric distribution of fibers in the second-harmonic generation microscopy images) and fibrillar (violation of packing and different nature of a basket-weave network of fibrils in the AFM images) organization levels. The calculated CP channel-related parameters are shown to have a statistically significant difference between stable and unstable (also called vulnerable) plaques, and hence, CP OCT could be a potentially powerful, minimally invasive method for vulnerable plaques detection.
View Article and Find Full Text PDFA novel hybrid method which combines sub-wavelength-scale phase measurements and pixel-scale displacement tracking for robust strain mapping in compressional optical coherence elastography is proposed. Unlike majority of OCE methods it does not rely on initial reconstruction of displacements and does not suffer from the phase-wrapping problem for super-wavelength displacements. Its robustness is enabled by direct fitting of local phase gradients obviating the necessity of phase unwrapping and error-prone numerical differentiation.
View Article and Find Full Text PDFCardiovascular disease remains the leading cause of mortality worldwide. Here we suggest a novel approach for tracking atherosclerosis progression based on the use of atomic force microscopy (AFM). Using AFM, we studied cross-sections of coronary arteries with the following types of lesions: Type II-thickened intima; Type III-thickened intima with a lipid streak; Type IV-fibrotic layer over a lipid core; Type Va-unstable fibrotic layer over a lipid core; Type Vc-very thick fibrotic layer.
View Article and Find Full Text PDF