Publications by authors named "Natalia Crespo-Biel"

The microtubule-associated protein Tau is an intrinsically unfolded, very soluble neuronal protein. Under still unknown circumstances, Tau protein forms soluble oligomers and insoluble aggregates that are closely linked to the cause and progression of various brain pathologies, including Alzheimer's disease. Previously we reported the development of liposome-based vaccines and their efficacy and safety in preclinical mouse models for tauopathy.

View Article and Find Full Text PDF

Tau.P301L transgenic mice suffer precocious mortality between ages 8 and 11 months, resulting from upper airway defects caused by tauopathy in autonomic brainstem circuits that control breathing (Dutschmann et al., 2010).

View Article and Find Full Text PDF

Progressive aggregation of protein Tau into oligomers and fibrils correlates with cognitive decline and synaptic dysfunction, leading to neurodegeneration in vulnerable brain regions in Alzheimer's disease. The unmet need of effective therapy for Alzheimer's disease, combined with problematic pharmacological approaches, led the field to explore immunotherapy, first against amyloid peptides and recently against protein Tau. Here we adapted the liposome-based amyloid vaccine that proved safe and efficacious, and incorporated a synthetic phosphorylated peptide to mimic the important phospho-epitope of protein Tau at residues pS396/pS404.

View Article and Find Full Text PDF

The microtubule-associated protein Tau (MAPT) is a major component of the pathogenesis of a wide variety of brain-damaging disorders, known as tauopathies. These include Alzheimer's disease (AD), denoted as secondary tauopathy because of the obligatory combination with amyloid pathology. In all tauopathies, protein Tau becomes aberrantly phosphorylated, adopts abnormal conformations, and aggregates into fibrils that eventually accumulate as threads in neuropil and as tangles in soma.

View Article and Find Full Text PDF

Objectives: We investigated the neuroprotective effects of lithium in an experimental neurodegeneration model gated to kainate (KA) receptor activation.

Methods: The hippocampus from KA-treated mice and hippocampal cell cultures were used to evaluate the pathways regulated by chronic lithium pretreatment in both in vivo and in vitro models.

Results: Treatment with KA, as measured by fragmentation of alpha-spectrin and biochemically, induced the activation of calpain resulting in p35 cleavage to p25, indicating activation of cyclin-dependent kinase 5 (cdk5) and glycogen synthase kinase-3ss (GSK-3ss) and an increase in tau protein phosphorylation.

View Article and Find Full Text PDF

Lithium is a simple cation that has been used clinically since 1950 for the treatment of bipolar disorder. However in the last decade numerous studies either using animal models or human trials suggest that this cation may delay progression of neurodegenerative diseases. One of the main challenges facing researchers in the neurosciences is to identify key molecules in neuronal apoptosis.

View Article and Find Full Text PDF

This study was undertaken to investigate the potential role of cell cycle re-entry in an experimental model of Huntington's disease and in human brain samples. We found that after treatment of rats with the mitochondrial neurotoxin 3-nitropropionic acid, the expression of cell cycle markers of G1 phase measured by immunohistochemistry was induced in the striatal brain region. Furthermore, we detected an increase in the nuclear and also cytoplasmatic E2F-1 expression, suggesting that this protein could activate the apoptotic cascade in rat brain.

View Article and Find Full Text PDF

3-Nitropropionic acid (3-NP) is a neurotoxin that inhibits mitochondrial complex II and is used in an experimental model of Huntington's disease. Treatment of rats with 3-NP 30mgkg(-1) i.p.

View Article and Find Full Text PDF