Publications by authors named "Natalia Chopenko"

The low permeability of porin channels is the possible reason for Gram-negative bacterial resistance to antibiotics. The adaptive accumulation of lysophosphatidylethanolamine (LPE) in Yersinia pseudotuberculosis induces conformational changes of OmpF porin that may hinder the transport of antibiotics through this channel. The present study was aimed to test whether the changes in LPE content affect the resistance of bacteria to ampicillin.

View Article and Find Full Text PDF

Increasing global temperatures are expected to increase the risk of extinction of various species due to acceleration in the pace of shifting climate zones. Nevertheless, there is no information on the physicochemical properties of membrane lipids that enable the adaptation of the algae to different climatic zones. The present work aimed to compare fatty acid composition and thermal transitions of membrane lipids from green macroalgae harvested in the Sea of Japan and the Adriatic Sea in summer.

View Article and Find Full Text PDF

Tick-borne encephalitis (TBE) is a widespread, dangerous infection. Unfortunately, all attempts to create safe anti-TBE subunit vaccines are still unsuccessful due to their low immunogenicity. The goal of the present work was to investigate the immunogenicity of a recombinant chimeric protein created by the fusion of the EIII protein, comprising domain III and a stem region of the tick-borne encephalitis virus (TBEV) E protein, and the OmpF porin of (OmpF-EIII).

View Article and Find Full Text PDF

Domain III (DIII) of the tick-borne encephalitis virus (TBEV) protein E contains epitopes, which induce antibodies capable of neutralizing the virus. To enhance the immunogenicity of this protein, which has a low molecular weight, the aim of the present work was to express, isolate, and characterize a chimeric protein based on the fusion of the bacterial chaperone HSP70 of and EIII (DIII + stem) as a prospective antigen for an adjuvanted delivery system, the tubular immunostimulating complex (TI-complex). The chimeric construction was obtained using pET-40b(+) vector by ligating the respective genes.

View Article and Find Full Text PDF

The HA1 subunit of the influenza virus hemagglutinin (HA) is a valuable antigen for the development of vaccines against flu due to the availability of most antigenic sites which are conformational. Therefore, a novel adjuvanted antigen delivery system, tubular immunostimulating complexes (TI-complexes) comprising monogalactosyldiacylglycerol (MGDG) from different marine macrophytes as a lipid matrix for an antigen, was applied to enhance the immunogenicity of recombinant HA1 of influenza A H1N1 and to study the relation between its immunogenicity and conformation. The content of anti-HA1 antibodies and cytokines was estimated by ELISA after the immunization of mice with HA1 alone, and HA1 was incorporated in TI-complexes based on different MGDGs isolated from green algae , brown algae , and seagrass .

View Article and Find Full Text PDF

New generation vaccines, based on isolated antigens, are safer than traditional ones, comprising the whole pathogen. However, major part of purified antigens has weak immunogenicity. Therefore, elaboration of new adjuvants, more effective and safe, is an urgent problem of vaccinology.

View Article and Find Full Text PDF
Article Synopsis
  • Tick-borne encephalitis is a serious public health issue with limited treatment options, highlighting the need for effective vaccines targeting the virus's key antigenic domain, domain III of the E protein.* -
  • This study aimed to create a chimeric protein by fusing domain III of the E protein with a bacterial protein (OmpF) to enhance immunogenicity and reduce toxicity, leading to successful expression in E. coli.* -
  • The resulting chimeric protein was confirmed to elicit an antibody response in mice, suggesting its potential as a candidate for developing preventive vaccines against tick-borne encephalitis.*
View Article and Find Full Text PDF

OmpF porin from the outer membrane of Yersinia pseudotuberculosis was cloned into pET-40b(+) plasmid. Using E. coli Rosetta (DE3) strain, MX medium, IPTG concentration of 0.

View Article and Find Full Text PDF