Hydrogels are a viable option for biomedical applications due to their biocompatibility, biodegradability, and ability to incorporate various healing agents while maintaining their biological efficacy. This study focused on the preparation and characterization of novel hybrid hydrogels enriched with the natural algae compound Ulvan for potential use in wound dressings. The characterization of the hydrogel membranes involved multiple methods to assess their structural, mechanical, and chemical properties, such as pH measurements, swelling, moisture content and uptake, gel fraction, hydrolytic degradation, protein adsorption and denaturation tests, rheological measurements, SEM, biocompatibility testing, and scratch wound assay.
View Article and Find Full Text PDFNb(0.05 moles%)-zeolites prepared via a post synthesis methodology (BEA, Y, ZSM-5), or a direct sol-gel method (Silicalite-1) were investigated in the hydroxymethylfurfural (HMF) oxidation by both molecular oxygen, in aqueous phase, and organic peroxides, in acetonitrile. The catalysts prepared through the post synthesis methodology (i.
View Article and Find Full Text PDFThe one-pot production of succinic acid from glucose was investigated in pure hot water as solvent using Nb (0.02 and 0.05 moles%)-Beta zeolites obtained by a post-synthesis methodology.
View Article and Find Full Text PDFPyrolysis of chitosan films containing Au(3+) renders 1.1.1 oriented Au nanoplatelets (20 nm lateral size, 3-4 nm height) on a few layers of N-doped graphene (Au/fl-G), while the lateral sides were 0.
View Article and Find Full Text PDFMetal oxide nanoparticles supported on graphene exhibit high catalytic activity for oxidation, reduction and coupling reactions. Here we show that pyrolysis at 900 °C under inert atmosphere of copper(II) nitrate embedded in chitosan films affords 1.1.
View Article and Find Full Text PDF