The phenomenon of localized surface plasmon resonance (LSPR) provides high sensitivity in detecting biomolecules through shifts in resonance frequency when a target is present. Computational studies in this field have used the full Maxwell equations with simplified models of a sensor-analyte system, or they neglected the analyte altogether. In the long-wavelength limit, one can simplify the theory via an electrostatics approximation while adding geometrical detail in the sensor and analytes (at moderate computational cost).
View Article and Find Full Text PDFProtein-surface interactions are ubiquitous in biological processes and bioengineering, yet are not fully understood. In biosensors, a key factor determining the sensitivity and thus the performance of the device is the orientation of the ligand molecules on the bioactive device surface. Adsorption studies thus seek to determine how orientation can be influenced by surface preparation, varying surface charge, and ambient salt concentration.
View Article and Find Full Text PDF