Publications by authors named "Natalia Boiko"

Light patternable colorless liquid crystalline (LC) polymers are promising materials for functional photonic devices with broad applications in optical communication, diffractive optics, and displays. This work reports photoinduced optical anisotropy in thin films of azobenzene-containing (Azo) LC block copolymer supramolecular complexes, which can be decolorized after light patterning providing colorless patterned birefringent polymer films. The supramolecular complexes are prepared via intermolecular pyridine-phenol hydrogen bonding between a low-molecular-weight Azo phenol and host LC AB diblock and ABA triblock copolymers consisted of LC phenylbenzoate (PhM) blocks and poly(vinylpyridine) units.

View Article and Find Full Text PDF

Photochromic liquid crystalline block copolymers (PLCBCs) are currently playing a significant role as light-responsive materials because of their light controllable features over multiple length scales. Herein, a study of the photoinduced optical anisotropy derived by the combination of orientation phenomena at molecular and supramolecular levels in a novel kind of side-chain PLCBCs with mesogenic phenyl benzoate groups and pyridine units that is hydrogen bonded with azobenzene-containing phenol is reported. Based on the polymeric architectures and composition, the supramolecular configuration self-organizes in different microphases that affect the material response to the external stimuli.

View Article and Find Full Text PDF

Hybrid fluorescent liquid crystalline (LC) composites containing inorganic quantum dots (QDs) are promising materials for many applications in optics, nanophotonics and display technology, combining the superior emission capability of QDs with the externally controllable optical properties of LCs. In this work, we propose the hybrid LC composites that were obtained by embedding CdSe/ZnS QDs into a series of host LC block copolymers of different architectures by means of a two-stage ligand exchange procedure. The ABA/BAB triblock copolymers and AB diblock copolymers with different polymerization degrees are composed of nematogenic phenyl benzoate acrylic monomer units and poly(4-vinylpyridine) blocks, which are capable of binding to the QD surface.

View Article and Find Full Text PDF

Dye-doped nematic side-chain liquid-crystalline polymers possess extraordinary large optical nonlinearity and ability to store the induced orientational deformations in a glassy state, which makes them a very promising material for photonic applications. In this study, the phase structures were generated and recorded in the bulk of a 50-μm layer of a nematic liquid-crystalline side-chain polymer, containing polyacrylate backbone, spacer having five methylene groups, and phenyl benzoate mesogenic fragment. The polymer was doped with KD-1 azodye.

View Article and Find Full Text PDF

Photosensitive liquid crystalline (LC) block copolymers are a universal platform for designing functional materials for optics and photonics. Here, azobenzene LC ABA triblock copolymer containing mesogenic groups in each block is studied as a medium for the recording of polarization holographic gratings. The fast recording of polarization gratings is successfully performed with two orthogonally circularly polarized light beams of a 532-nm laser.

View Article and Find Full Text PDF

Two sequential transformations of the orientational structure in nematic liquid crystal droplets containing a dendrimer additive (nanosized macromolecules with light-absorbing azobenzene terminal moieties) under light irradiation in the UV-blue spectral range were investigated. The origin of these transitions is in the change of the boundary conditions due to photoisomerization of the dendrimer adsorbed onto the liquid crystal-glycerol interface. It was shown that the photoisomerization processes of dendrimer molecules in a liquid crystal are accompanied by a spatial rearrangement of their azobenzene moieties, which is the key point in the explanation of the observed effects.

View Article and Find Full Text PDF

Reversible orientational transitions in the droplets of a nematic liquid crystal (NLC) caused by the change of boundary conditions under the low intensity diode illumination are investigated. Photosensitivity of NLC is achieved by the addition of the dendrimer compound with azobenzene terminal groups. Two types of NLC droplets in glycerol are considered: the spherical droplets in the bulk of glycerol and the droplets laid-down onto the solid substrate.

View Article and Find Full Text PDF

We have studied copolymer dendrimer structure: carbosilane dendrimers with terminal phenylbenzoate mesogenic groups attached by poly(ethylene) glycol (PEG) spacers. In this system PEG spacers are additional tuning to usual copolymer structure: dendrimer with terminal mesogenic groups. The dendrimer macromolecules were investigated in a dilute chloroform solution by (1)H NMR methods (spectra and relaxations).

View Article and Find Full Text PDF

A new theoretical description of the interior mobility of carbosilane dendrimers has been tested. Experiments were conducted using measurements of the (1)H NMR spin-lattice relaxation time, T(1H), of two-, three- and four-generation carbosilane dendrimers with three different types of terminal groups in dilute chloroform solutions. Temperature dependences of the NMR relaxation rate, 1/T(1H), were obtained for the internal CH(2)-groups of the dendrimers in the range of 1/T(1H) maximum, allowing us to directly evaluate the average time of the internal spectrum for each dendrimer.

View Article and Find Full Text PDF

The 4-generation carbosilane dendrimer with terminal cyanobiphenyl mesogenic groups in dilute solution of CDCl(3) was investigated using (1)H NMR technique. The spectrum was obtained and the relaxation time, T(1), was measured in the temperature range 320-225 K. For the first time, the extrema of T(1) values were achieved for majority of the dendrimer functional groups.

View Article and Find Full Text PDF

A complete Deuterium NMR study performed on partially deuterated liquid crystalline carbosilane dendrimer is here reported. The dendrimer under investigation shows a SmA phase in a large temperature range from 381 to 293 K, and its mesophasic properties have been previously determined. However, in this work the occurrence of a biphasic region between the isotropic and SmA phases has been put in evidence.

View Article and Find Full Text PDF

The first series of carbosilane liquid crystal codendrimers with groups of different polarity has been synthesized. The chemical structure of the newly synthesized materials and the composition of the codendrimers were studied by NMR spectroscopy and MALDI-TOF MS. It was found that the codendrimers tend to form stable Langmuir films at the air-water surface.

View Article and Find Full Text PDF

Synopsis of recent research by authors named "Natalia Boiko"

  • - Natalia Boiko's recent research focuses on the design and characterization of liquid crystalline materials, particularly azobenzene-containing polymers, which exhibit unique optical properties and responsiveness to light stimuli, making them suitable for photonic applications.
  • - Her publications highlight the development of hybrid materials that combine liquid crystal polymers with quantum dots, showcasing the potential for advanced optical devices capable of dynamic response and high performance in applications such as optical communication and display technology.
  • - Boiko's work includes detailed studies on the photoinduced anisotropy and phase structure manipulation within these materials, revealing mechanisms for controlling their optical behavior through light, which has significant implications for future innovations in the field of optics and materials science.