Poly(ADP-ribosyl)ation (PARylation) is a reversible post-translational protein modification that has profound regulatory functions in metabolism, development and immunity, and is conserved throughout the eukaryotic lineage. Contrary to metazoa, many components and mechanistic details of PARylation have remained unidentified in plants. Here we present the transcriptional co-regulator RADICAL-INDUCED CELL DEATH1 (RCD1) as a plant PAR-reader.
View Article and Find Full Text PDFThe decarboxylation of pyruvate is a central reaction in the carbon metabolism of all organisms. It is catalyzed by the pyruvate:ferredoxin oxidoreductase (PFOR) and the pyruvate dehydrogenase (PDH) complex. Whereas PFOR reduces ferredoxin, the PDH complex utilizes NAD.
View Article and Find Full Text PDFPhotosynthetic organisms must sense and respond to fluctuating environmental conditions in order to perform efficient photosynthesis and to avoid the formation of dangerous reactive oxygen species. The excitation energy arriving at each photosystem permanently changes due to variations in the intensity and spectral properties of the absorbed light. Cyanobacteria, like plants and algae, have developed a mechanism, named "state transitions," that balances photosystem activities.
View Article and Find Full Text PDFApplication of proteomics has made a profound impact on the cyanobacterial research. It has not only provided a global identification of expressed proteins in cyanobacterial cells, but has also brought valuable insights into dynamics of cell responses to environmental challenges, regulation mechanisms, structure of protein complexes, compartmentalization, and other important biological questions. In this review, we highlight current trends in proteomics of cyanobacteria and bring to focus rising techniques which have a huge potential in expanding our knowledge about cyanobacterial proteins and in developing cyanobacteria-based biotechnological applications.
View Article and Find Full Text PDFIn Synechocystis 6803, the ferredoxin 5 (Fd5) phosphoprotein and the S/T protein kinase SpkG are encoded by the slr0148 and slr0152 genes, respectively, which belong to the slr0144-slr0152 cluster. Using a targeted proteomic approach, we showed that SpkG is responsible for the phosphorylation of Fd5 on residues T18 and T72. Sequence alignments and Fd5 structure modelling suggest that these phosphorylation events modulate protein-protein interaction.
View Article and Find Full Text PDFHeterocyst-forming cyanobacteria grow as filaments that can be hundreds of cells long. Proteinaceous septal junctions provide cell-cell binding and communication functions in the filament. In sp.
View Article and Find Full Text PDFNAD(P)H dehydrogenases comprise type 1 (NDH-1) and type 2 (NDH-2s) enzymes. Even though the NDH-1 complex is a well-characterized protein complex in the thylakoid membrane of sp. PCC 6803 (hereafter ), the exact roles of different NDH-2s remain poorly understood.
View Article and Find Full Text PDFIn Synechocystis sp. PCC 6803, the flv4-2 operon encodes the flavodiiron proteins Flv2 and Flv4 together with a small protein, Sll0218, providing photoprotection for Photosystem II (PSII). Here, the distinct roles of Flv2/Flv4 and Sll0218 were addressed, using a number of flv4-2 operon mutants.
View Article and Find Full Text PDFO-Phosphorylation has been shown in photosynthesis-related proteins in a cyanobacterium Synechocystis sp. strain PCC 6803 (thereafter Synechocystis 6803), suggesting that phosphorylation of S, T, and Y residues might be important in photosynthesis-related processes. Investigation of biological roles of these phosphorylation events requires confident knowledge of the phosphorylated sites and prospects for their individual assessment.
View Article and Find Full Text PDFTwo mutants isolated from a tagging library of Synechocystis sp. strain PCC 6803 were sensitive to high light and had a tag in sll1471 encoding CpcG2, a linker protein for photosystem I (PSI)-specific antenna. Both mutants demonstrated strongly impaired NDH-1-dependent cyclic electron transport.
View Article and Find Full Text PDFOne of the hallmarks of marine diatom biology is their ability to cope with rapid changes in light availability due to mixing of the water column and the lens effect. We investigated how irradiance fluctuations influence the relative abundance of key photosynthetic proteins in the centric diatom Thalassiosira pseudonana by means of mass-spectrometry-based approaches for relative protein quantitation. Most notably, fluctuating-light conditions lead to a substantial overall up-regulation of light-harvesting complex proteins as well as several subunits of photosystems II and I.
View Article and Find Full Text PDFCalcium is integral to the perception, communication and adjustment of cellular responses to environmental changes. However, the role of Ca(2+) in fine-tuning cellular responses of wild-type cyanobacteria under favourable growth conditions has not been examined. In this study, extracellular Ca(2+) has been altered, and changes in the whole transcriptome of Anabaena sp.
View Article and Find Full Text PDFThe flavodiiron proteins (FDPs) Flv1 and Flv3 in cyanobacteria function in photoreduction of O to HO, without concomitant formation of reactive oxygen species, known as the Mehler-like reaction. Both Flv1 and Flv3 are essential for growth under fluctuating light (FL) intensities, providing protection for PSI. Here we compared the global transcript profiles of the wild type (WT), Δflv1 and Δflv1/Δflv3 grown under constant light (GL) and FL.
View Article and Find Full Text PDFWith the tremendous progress of the past decades, molecular plant science is becoming more unified than ever. We now have the exciting opportunity to further connect subdisciplines and understand plants as whole organisms, as will be required to efficiently utilize them in natural and agricultural systems to meet human needs. The subfields of photosynthesis, plant developmental biology and plant stress are used as examples to discuss how plant science can become better integrated.
View Article and Find Full Text PDFThe flavodiiron proteins (FDPs) are involved in the detoxification of oxidative compounds, such as nitric oxide (NO) or O(2) in Archaea and Bacteria. In cyanobacteria, the FDPs Flv1 and Flv3 are essential in the light-dependent reduction of O(2) downstream of PSI. Phylogenetic analysis revealed that two genes (flvA and flvB) in the genome of Chlamydomonas reinhardtii show high homology to flv1 and flv3 genes of the cyanobacterium Synechocystis sp.
View Article and Find Full Text PDFInorganic phosphorus (Pi) is one of the main growth-limiting factors of diazotrophic cyanobacteria. Due to human activity, the availability of Pi has increased in water bodies, resulting in eutrophication and the formation of massive cyanobacterial blooms. In this study, we examined the molecular responses of the cyanobacterium Anabaena sp.
View Article and Find Full Text PDFWe announce the draft genome sequence of Calothrix strain 336/3, an N2-fixing heterocystous filamentous cyanobacterium isolated from a natural habitat. Calothrix 336/3 produces higher levels of hydrogen than Nostoc punctiforme PCC 73102 and Anabaena strain PCC 7120 and, therefore, is of interest for potential technological applications.
View Article and Find Full Text PDFSenescence involves increased expression of proteases, which may participate in nitrogen recycling or cellular signalling. 2D zymograms detected two protein species with increased proteolytic activity in senescing leaves of Arabidopsis thaliana. A proteomic analysis revealed that both protein species correspond to a subtilisin protease encoded by At3g14067, termed Senescence-Associated Subtilisin Protease (SASP).
View Article and Find Full Text PDFOxygenic photosynthesis in cyanobacteria, algae, and plants is carried out by a fabulous pigment-protein machinery that is amazingly complicated in structure and function. Many different approaches have been undertaken to characterize the most important aspects of photosynthesis, and proteomics has become the essential component in this research. Here we describe various methods which have been used in proteomic research of cyanobacteria, and demonstrate how proteomics is implemented into on-going studies of photosynthesis in cyanobacterial cells.
View Article and Find Full Text PDFRapid responses of chloroplast metabolism and adjustments to photosynthetic machinery are of utmost importance for plants' survival in a fluctuating environment. These changes may be achieved through posttranslational modifications of proteins, which are known to affect the activity, interactions, and localization of proteins. Recent studies have accumulated evidence about the crucial role of a multitude of modifications, including acetylation, methylation, and glycosylation, in the regulation of chloroplast proteins.
View Article and Find Full Text PDFFlavodiiron proteins are known to have crucial and specific roles in photoprotection of photosystems I and II in cyanobacteria. The filamentous, heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120 contains, besides the four flavodiiron proteins Flv1A, Flv2, Flv3A, and Flv4 present in vegetative cells, two heterocyst-specific flavodiiron proteins, Flv1B and Flv3B.
View Article and Find Full Text PDFOxygenic photosynthesis evolved with cyanobacteria, the ancestors of plant chloroplasts. The highly oxidizing chemistry of water splitting required concomitant evolution of efficient photoprotection mechanisms to safeguard the photosynthetic machinery. The role of flavodiiron proteins (FDPs), originally called A-type flavoproteins or Flvs, in this context has only recently been appreciated.
View Article and Find Full Text PDFThe slr0006 gene of Synechocystis sp. PCC 6803 is upregulated at mRNA and protein level under carbon limitation. The T(N11)A motif in the upstream region of slr0006 is a binding site for transcriptional regulator NdhR, and accumulation of the Slr0006 protein in ndhR deletion mutant grown in high CO2 suggests that NdhR may be a negative regulator of slr0006.
View Article and Find Full Text PDFCyanobacterial flavodiiron proteins (FDPs; A-type flavoprotein, Flv) comprise, besides the β-lactamase-like and flavodoxin domains typical for all FDPs, an extra NAD(P)H:flavin oxidoreductase module and thus differ from FDPs in other Bacteria and Archaea. Synechocystis sp. PCC 6803 has four genes encoding the FDPs.
View Article and Find Full Text PDF