Biotin synthase (BS) is an AdoMet-dependent radical enzyme that catalyzes the insertion of sulfur into saturated C6 and C9 atoms in the substrate dethiobiotin. To facilitate sulfur insertion, BS catalyzes the reductive cleavage of AdoMet to methionine and 5'-deoxyadenosyl radicals, which then abstract hydrogen atoms from the C6 and C9 positions of dethiobiotin. The enzyme from Escherichia coli is purified as a dimer that contains one [2Fe-2S]2+ cluster per monomer and can be reconstituted in vitro to contain an additional [4Fe-4S]2+ cluster per monomer.
View Article and Find Full Text PDFBiotin synthase is an AdoMet-dependent radical enzyme that catalyzes the insertion of an FeS cluster-derived sulfur atom into dethiobiotin. The dimeric enzyme is purified containing one [2Fe-2S]2+ cluster per monomer, but it is most active when reconstituted with an additional [4Fe-4S]2+ cluster per monomer. Using Mössbauer spectroscopy coupled with differential reconstitution of each cluster with 57Fe, we show that the reconstituted enzyme has approximately 1:1 [2Fe-2S]2+ and [4Fe-4S]2+ clusters and that the [4Fe-4S]2+ cluster is assembled at an alternate site not previously occupied by the [2Fe-2S]2+ cluster.
View Article and Find Full Text PDF