Publications by authors named "Natalia Assaife-Lopes"

Adult neurogenesis in the brain continuously seeds new neurons throughout life, but how homeostasis of adult neural stem cells (NSCs) is maintained is incompletely understood. Here, we demonstrate that the DNA methylation adapter ubiquitin-like, containing PHD and RING finger domains-1 (UHRF1) is expressed in, and regulates proliferation of, the active but not quiescent pool of adult neural progenitor cells. Mice with a neural stem cell-specific deficiency in UHRF1 exhibit a massive depletion of neurogenesis resulting in a collapse of formation of new neurons.

View Article and Find Full Text PDF

Axon growth and dendrite development are key processes for the establishment of a functional neuronal network. Adenosine, which is released by neurons and glia, is a known modulator of synaptic transmission but its influence over neuronal growth has been much less investigated. We now explored the action of adenosine A2A receptors (A2AR) upon neurite outgrowth, discriminating actions over the axon or dendrites, and the mechanisms involved.

View Article and Find Full Text PDF

Mesenchymal stem cells occupy niches in stromal tissues where they provide sources of cells for specialized mesenchymal derivatives during growth and repair. The origins of mesenchymal stem cells have been the subject of considerable discussion, and current consensus holds that perivascular cells form mesenchymal stem cells in most tissues. The continuously growing mouse incisor tooth offers an excellent model to address the origin of mesenchymal stem cells.

View Article and Find Full Text PDF

Brain-derived neurotrophic factor (BDNF) signalling is critical for neuronal development and transmission. Recruitment of TrkB receptors to lipid rafts has been shown to be necessary for the activation of specific signalling pathways and modulation of neurotransmitter release by BDNF. Since TrkB receptors are known to be modulated by adenosine A(2A) receptor activation, we hypothesized that activation of A(2A) receptors could influence TrkB receptor localization among different membrane microdomains.

View Article and Find Full Text PDF

The synapse is a crowded area. In the last years, the concept that proteins can be organized in different membrane domains according to their structure has emerged. Cholesterol-rich membrane domains, or lipid rafts, form an organized portion of the membrane that is thought to concentrate signaling molecules.

View Article and Find Full Text PDF

The cannabinoid CB(1) receptor-mediated modulation of γ-aminobutyric acid (GABA) release from inhibitory interneurons is important for the integrity of hippocampal-dependent spatial memory. Although adenosine A(1) receptors have a central role in fine-tuning excitatory transmission in the hippocampus, A(1) receptors localized in GABAergic cells do not directly influence GABA release. CB(1) and A(1) receptors are the main targets for the effects of two of the most heavily consumed psychoactive substances worldwide: Δ(9)-tetrahydrocannabinol (THC, a CB(1) receptor agonist) and caffeine (an adenosine receptor antagonist).

View Article and Find Full Text PDF

In this paper we review some novel aspects related to the way adenosine A(2A) receptors (A(2A)R) modulate the action of BDNF or its high-affinity receptors, the TrkB receptors, on synaptic transmission and plasticity, as well as upon cholinergic currents and GABA transporters. Evidence has been accumulating that adenosine A(2A)Rs are required for most of the synaptic actions of BDNF. In some cases, where A(2A)Rs are constitutively activated (e.

View Article and Find Full Text PDF

Brain-derived neurotrophic factor (BDNF) signaling is critical for neuronal development and transmission. Recruitment of TrkB receptors to lipid rafts has been shown to be necessary for the activation of specific signaling pathways and modulation of neurotransmitter release by BDNF. Since TrkB receptors are known to be modulated by adenosine A(2A) receptor activation, we hypothesized that activation of A(2A) receptors could influence TrkB receptor localization among different membrane microdomains.

View Article and Find Full Text PDF

We have previously demonstrated that adenosine is deaminated to inosine in the isolated basolateral membrane (BLM) of kidney proximal tubules. This work investigates the possible effect of inosine on proximal tubule Na(+)-ATPase activity. Inosine reduced Na(+)-ATPase activity by 70%.

View Article and Find Full Text PDF

In this work, the metabolism of adenosine by isolated BLM associated-enzymes and the implications of this process for the cAMP-signaling pathway are investigated. Inosine was identified as the major metabolic product, suggesting the presence of adenosine deaminase (ADA) activity in the BLM. This was confirmed by immunoblotting and ADA-specific enzyme assay.

View Article and Find Full Text PDF

We previously reported that adenosine, through A(2A) receptor activation, potentiates synaptic actions of brain-derived neurotrophic factor (BDNF) in the hippocampus of infant (3-4 weeks) rats. Since A(2A)-receptor-mediated actions are more evident in old than in young rats and since the therapeutic potential for BDNF-based strategies is greater in old subjects, we now evaluated synaptic actions of BDNF and the levels of TrkB receptors and of adenosine A(2A) receptors in the hippocampus of three groups of adult rats: young adults (10-16 weeks), old adults (36-38 weeks), and aged (70-80 weeks), as well as in one group of infant (3-4 weeks) rats. BDNF (20 ng/ml) enhances field excitatory postsynaptic potentials recorded from the hippocampus of young adults and aged rats, an action triggered by adenosine A(2A) receptor activation, since it was blocked by the A(2A) receptor antagonist, ZM 241385.

View Article and Find Full Text PDF