Pericytes are perivascular cells related to vessel structure and angiogenesis that can interact with neoplastic cells, interfering with cancer progression and outcomes. This study focused on the characterization of pericytes in oral squamous cell carcinoma (OSCC) using clinical samples and a transgenic mouse model of oral carcinogenesis. Nestin/NG2 (type-1) and nestin/NG2 (type-2) pericytes were analyzed by direct fluorescence after induction of oral carcinogenesis (4-nitroquinoline-1-oxide).
View Article and Find Full Text PDFObjectives: Selective caries removal aims to remove carious tissue in deep dentin lesions. However, a discussion stands on the value of antiseptics and chemomechanical adjuvant methods to reduce the bacterial load on residual caries lesions. This systematic review has addressed two main clinical questions to compare the antimicrobial efficacy of available methods using (1) antiseptic or (2) chemomechanical agents before restoring dentin carious lesions.
View Article and Find Full Text PDFAlthough Bioactive Glasses (BGs) have been progressively optimized, their preparation often still involves the use of toxic reagents and high calcination temperatures to remove organic solvents. In the present work, these synthesis related drawbacks were overcome by treating the ashes from the Equisetum hyemale plant in an ethanol/water solution to develop a bioactive composite [glass/carbon (BG-Carb)]. The BG-Carb was characterized by scanning electron microscopy, and transmission electron microscopy; and its chemical composition was assessed by inductively coupled plasma-optical emission spectroscopy.
View Article and Find Full Text PDFObjective: Undifferentiated cells play pivotal roles in sustaining tissue homeostasis during physiological turnovers and after tissue impairment. Nestin and Neuron-glial antigen 2 (NG2) are markers frequently deployed to distinguish progenitor populations. In the salivary gland scenario, these markers remain largely unknown.
View Article and Find Full Text PDFPhotobiomodulation is being widely applied for improving dermal or mucosal wound healing. However, the underlying cellular and molecular processes that directly contribute to its effects remain poorly understood. Pericytes are relevant cells involved in the wound microenvironment and could be one of the main targets of photobiomodulation due to their plasticity and perivascular localization.
View Article and Find Full Text PDF