Sebaceous glands (SGs) release oils that protect our skin, but how these glands respond to injury has not been previously examined. Here, we report that SGs are largely self-renewed by dedicated stem cell pools during homeostasis. Using targeted single-cell RNA sequencing, we uncovered both direct and indirect paths by which resident SG progenitors ordinarily differentiate into sebocytes, including transit through a Krt5+PPARγ+ transitional basal cell state.
View Article and Find Full Text PDFSebaceous glands (SGs) release oils that protect our skin, but how these glands respond to injury has not been previously examined. Here, we report that SGs are largely self-renewed by dedicated stem cell pools during homeostasis. Using targeted single cell RNA-sequencing, we uncovered both direct and indirect paths by which these resident SG progenitors ordinarily differentiate into sebocytes, including transit through a PPARγ+Krt5+ transitional cell state.
View Article and Find Full Text PDFBasal cell carcinomas (BCCs) frequently possess immense mutational burdens; however, the functional significance of most of these mutations remains unclear. Here, we report that loss of Ptch1, the most common mutation that activates upstream Hedgehog (Hh) signaling, initiates the formation of nascent BCC-like tumors that eventually enter into a dormant state. However, rare tumors that overcome dormancy acquire the ability to hyperactivate downstream Hh signaling through a variety of mechanisms, including amplification of Gli1/2 and upregulation of Mycn.
View Article and Find Full Text PDFOil-secreting sebaceous glands (SGs) are critical for proper skin function; however, it remains unclear how different factors act together to modulate SG stem cells. Here, we provide functional evidence that each SG lobe is serviced by its own dedicated stem cell population. Upon ablating Notch signaling in different skin subcompartments, we find that this pathway exerts dual counteracting effects on SGs.
View Article and Find Full Text PDFThe uppermost aspect of the hair follicle, known as the infundibulum or hair canal, provides a passageway for hair shaft egress and sebum secretion. Recent studies have indicated that the infundibulum and sebaceous ducts are lined by molecularly distinct differentiated cells expressing markers including Keratin 79 and Gata6. Here, we ablated Gata6 from the skin and observed dilation of both the hair canal and sebaceous ducts, independent of gender and hair cycle stage.
View Article and Find Full Text PDFDuring development and regeneration, matrix progenitors undergo terminal differentiation to form the concentric layers of the hair follicle. These differentiation events are thought to require signals from the mesenchymal dermal papilla (DP); however, it remains unclear how DP-progenitor cell interactions govern specific cell fate decisions. Here, we show that the hair follicle differentiated layers are specified asynchronously, with early matrix progenitors initiating differentiation before surrounding the DP.
View Article and Find Full Text PDFBasal cell carcinoma (BCC) is characterized by frequent loss of PTCH1, leading to constitutive activation of the Hedgehog pathway. Although the requirement for Hedgehog in BCC is well established, the identity of disease-initiating cells and the compartments in which they reside remain controversial. By using several inducible Cre drivers to delete Ptch1 in different cell compartments in mice, we show here that multiple hair follicle stem cell populations readily develop BCC-like tumors.
View Article and Find Full Text PDFThe formation of epithelial tubes underlies the development of diverse organs. In the skin, hair follicles resemble tube-like structures with lumens that are generated through poorly understood cellular rearrangements. Here, we show that creation of the hair follicle lumen is mediated by early outward movement of keratinocytes from within the cores of developing hair buds.
View Article and Find Full Text PDFBackground & Aims: ZBP-89 (also ZNF148 or Zfp148) is a butyrate-inducible zinc finger transcription factor that binds to GC-rich DNA elements. Deletion of the N-terminal domain is sufficient to increase mucosal susceptibility to chemical injury and inflammation. We investigated whether conditional deletion of ZBP-89 from the intestinal and colonic epithelium of mice increases their susceptibility to pathogens such as Salmonella typhimurium.
View Article and Find Full Text PDFChronic inflammation in the stomach can lead to gastric cancer. We previously reported that gastrin-deficient (Gast⁻/⁻) mice develop bacterial overgrowth, inflammatory infiltrate, increased Il-1β expression, antral hyperplasia and eventually antral tumors. Since Hedgehog (Hh) signaling is active in gastric cancers but its role in precursor lesions is poorly understood, we examined the role of inflammation and Hh signaling in antral hyperplasia.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
December 2012
The gut microbiota is essential for the maintenance of intestinal immune homeostasis and is responsible for breaking down dietary fiber into short-chain fatty acids (SCFAs). Butyrate, the most abundant bioactive SCFA in the gut, is a histone deacetylase inhibitor (HDACi), a class of drug that has potent immunomodulatory properties. This characteristic of butyrate, along with our previous discovery that conventional dendritic cells (DCs) are required for the development of experimental colitis, led us to speculate that butyrate may modulate DC function to regulate gut mucosal homeostasis.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
September 2012
Antral gastrin is the hormone known to stimulate acid secretion and proliferation of the gastric corpus epithelium. Patients with mutations in the multiple endocrine neoplasia type 1 (MEN1) locus, which encodes the protein menin, develop pituitary hyperplasia, insulinomas, and gastrinomas in the duodenum. We previously hypothesized that loss of menin leads to derepression of the gastrin gene and hypergastrinemia.
View Article and Find Full Text PDFMenin is a tumour suppressor protein whose loss or inactivation causes multiple endocrine neoplasia 1 (MEN1), a hereditary autosomal dominant tumour syndrome that is characterized by tumorigenesis in multiple endocrine organs. Menin interacts with many proteins and is involved in a variety of cellular processes. Menin binds the JUN family transcription factor JUND and inhibits its transcriptional activity.
View Article and Find Full Text PDFMany genes of small RNAs and short interspersed elements (SINEs) are transcribed by RNA polymerase III due to an internal promoter that is composed of two boxes (A and B) spaced by 30-45bp. Rodent SINE B1 originated from 7SL RNA, and a 29-bp tandem duplication took place in B1 at an early stage of its evolution. As a result of this duplication, an additional box B (named B') located at a distance of 79-82bp from box A arose in SINE B1.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
November 2011
Mutations in the MEN1 gene correlate with multiple endocrine neoplasia I (MEN1). Gastrinomas are the most malignant of the neuroendocrine tumors associated with MEN1. Because menin and JunD proteins interact, we examined whether JunD binds to and regulates the gastrin gene promoter.
View Article and Find Full Text PDFUntil recently, zokors (Myospalacinae) were assigned to the Cricetidae family. However, analysis of mitochondrial and nuclear genes suggests a sister relationship between zokors and subterranean rodents of the Spalacidae family, namely blind mole rats (Spalacinae) and bamboo rats (Rhizomyinae). Here, we cloned and sequenced copies of the B1 short interspersed element (SINE) from the genome of zokor Myospalax psilurus.
View Article and Find Full Text PDFB1 SINEs were studied in 22 families covering all major rodent lineages. The number of B1 copies considerably varies, from 1 x 10(4) in Geomyidae to 1 x 10(6) in Myodonta. B1 sequences can be divided into three main structural variants: B1 with a 20-bp tandem duplication (found in Gliridae, Sciuridae, and Aplodontidae), B1 with a 29-bp duplication (found in other families), and proto-B1 without duplication (pB1).
View Article and Find Full Text PDF