Publications by authors named "Natalia A Samoylova"

One of the therapeutic approaches to age-related diseases is modulation of body cell metabolism through certain diets or their pharmacological mimetics. The ketogenic diet significantly affects cell energy metabolism and functioning of mitochondria, which has been actively studied in various age-related pathologies. Here, we investigated the effect of the ketogenic diet mimetic beta-hydroxybutyrate (BHB) on the expression of genes regulating mitochondrial biogenesis (, , , quality control (), functioning of the antioxidant system (, , , , , , ), and inflammatory response (, , , ) in the brain, lungs, heart, liver, kidneys, and muscles of young and old rats.

View Article and Find Full Text PDF

The consequences of stroke include cognitive deficits and sensorimotor disturbances, which are largely related to mitochondrial impairments in the brain. In this work, we have shown that the mimetic of the ketogenic diet beta-hydroxybutyrate (βHB) can improve neurological brain function in stroke. At 3 weeks after photothrombotic stroke, mice receiving βHB with drinking water before and after surgery recovered faster in terms of sensorimotor functions assessed by the string test and static rods and cognitive functions assessed by the Morris water maze.

View Article and Find Full Text PDF

Mitochondrial dysfunction in the ischemic brain is one of the hallmarks of stroke. Dietary interventions such as the ketogenic diet and hydroxycitric acid supplementation (a caloric restriction mimetic) may potentially protect neurons from mitochondrial damage induced by focal stroke in mice. We showed that in control mice, the ketogenic diet and the hydroxycitric acid did not impact significantly on the mtDNA integrity and expression of genes involved in the maintenance of mitochondrial quality control in the brain, liver, and kidney.

View Article and Find Full Text PDF

Cisplatin is a platinum-based cytostatic drug that is widely used for cancer treatment. Mitochondria and mtDNA are important targets for platinum-based cytostatics, which mediates its nephrotoxicity. It is important to develop therapeutic approaches to protect the kidneys from cisplatin during chemotherapy.

View Article and Find Full Text PDF

Cisplatin is a cytotoxic chemotherapeutic drug that leads to DNA damage and is used in the treatment of various types of tumors. However, cisplatin has several serious adverse effects, such as deterioration in cognitive ability. The aim of our work was to study neuroprotectors capable of preventing cisplatin-induced neurotoxicity.

View Article and Find Full Text PDF