Publications by authors named "Natalia A Chebotareva"

Protein aggregation is undesirable for cells due to its possible toxicity, and is also undesirable in biotechnology and pharmaceuticals. Polyamines are known to be capable of both suppressing and stimulating protein aggregation. In the present work polyamines (spermidine, putrescine) have been shown to alter the pathway of α-lactalbumin aggregation induced by dithiothreitol, leading to the formation of larger protein particles during the initial stages of aggregation and promoting the later stage of sticking of aggregates.

View Article and Find Full Text PDF

The importance of studying the structural stability of proteins is determined by the structure-function relationship. Protein stability is influenced by many factors among which are freeze-thaw and thermal stresses. The effect of trehalose, betaine, sorbitol and 2-hydroxypropyl-β-cyclodextrin (HPCD) on the stability and aggregation of bovine liver glutamate dehydrogenase (GDH) upon heating at 50 °C or freeze-thawing was studied by dynamic light scattering, differential scanning calorimetry, analytical ultracentrifugation and circular dichroism spectroscopy.

View Article and Find Full Text PDF

Effects of E90K, N98S, and A149V mutations in the light chain of neurofilaments (NFL) on the structure and thermal denaturation of the NFL molecule were investigated. By using circular dichroism spectroscopy, it was shown that these mutations did not lead to the changes in α-helical structure of NFL, but they caused noticeable effects on the stability of the molecule. We also identified calorimetric domains in the NFL structure by using differential scanning calorimetry.

View Article and Find Full Text PDF

Formation and accumulation of protein aggregates adversely affect intracellular processes in living cells and are negative factors in the production and storage of protein preparations. Chemical chaperones can prevent protein aggregation, but this effect is not universal and depends on the target protein structure and kinetics of its aggregation. We studied the effect of betaine (Bet) and lysine (Lys) on thermal aggregation of muscle glycogen phosphorylase b (Phb) at 48°C (aggregation order, n = 0.

View Article and Find Full Text PDF

The aggregation of intracellular proteins may be enhanced under stress. The expression of heat-shock proteins (HSPs) and the accumulation of osmolytes are among the cellular protective mechanisms in these conditions. In addition, one should remember that the cell environment is highly crowded.

View Article and Find Full Text PDF

αB-Crystallin (αB-Cr), one of the main crystalline lens proteins, along with other crystallins maintains lens transparency suppressing protein aggregation and thus preventing cataractogenesis. αB-Cr belongs to the class of molecular chaperones; being expressed in many tissues it has a dynamic quaternary structure, which is essential for its chaperone-like activity. Shift in the equilibrium between ensembles of oligomers of different size allows regulating the chaperone activity.

View Article and Find Full Text PDF

Protein-protein interactions (PPIs) play an important role in many biological processes in a living cell. Among them chaperone-client interactions are the most important. In this work PPIs of αB-crystallin and glycogen phosphorylase (Ph) in the presence of betaine (Bet) and arginine (Arg) at 48 °C and ionic strength of 0.

View Article and Find Full Text PDF

Chemical chaperones are a class of small molecules, which enhance protein stability, folding, inhibit protein aggregation, and are used for long-term storage of therapeutic proteins. The combined action of chemical chaperones trehalose, betaine and lysine on stability, aggregation and oligomeric state of muscle glycogen phosphorylase b (Phb) has been studied. Dynamic light scattering data indicate that the affinity of trehalose to Phb increased in the presence of betaine or lysine at both stages (stage of nucleation and aggregate growth) of enzyme aggregation at 48 °C, in contrast, the affinity of betaine to the enzyme in the presence of lysine remained practically unchanged.

View Article and Find Full Text PDF

Chemical chaperones are low-molecular compounds counteracting protein aggregation. Understanding of the mechanism of their effects is key to their potential use in biotechnology. The aggregation of bovine liver glutamate dehydrogenase (GDH) was studied at 40 °C and 50 °C using dynamic light scattering, analytical ultracentrifugation, size-exclusion chromatography and differential scanning calorimetry.

View Article and Find Full Text PDF

αB-crystallin (heat shock protein β5/HSPB5) is a member of the family of small heat shock proteins that is expressed in various organs of the human body including eye lenses and muscles. Therefore, mutations in the gene of this protein (CRYAB) might have many pathological consequences. A new mutation has recently been discovered in the α-crystallin domain of this chaperone protein which replaces aspartate 109 with alanine (D109A).

View Article and Find Full Text PDF

Arginine (Arg) is frequently used in biotechnology and pharmaceutics to stabilize protein preparations. When using charged ions like Arg, it is necessary to take into account their contribution to the increase in ionic strength, in addition to the effect of Arg on particular processes occurring under the conditions of constancy of ionic strength. Here, we examined contribution of ionic strength (0.

View Article and Find Full Text PDF

Small heat-shock proteins (sHSPs) are ATP-independent molecular chaperones that interact with partially unfolded proteins, preventing their aberrant aggregation, thereby exhibiting a chaperone-like activity. Dynamics of the quaternary structure plays an important role in the chaperone-like activity of sHSPs. However, relationship between the dynamic structure of sHSPs and their chaperone-like activity remains insufficiently characterized.

View Article and Find Full Text PDF

The effect of protein chaperones HspB6 and the monomeric form of the protein 14-3-3ζ (14-3-3ζ) on a test system based on thermal aggregation of UV-irradiated glycogen phosphorylase (UV-Ph) at 37 °C and a constant ionic strength (0.15 M) was studied using dynamic light scattering. A significant increase in the anti-aggregation activity of HspB6 and 14-3-3ζ was demonstrated in the presence of 0.

View Article and Find Full Text PDF

Chemical chaperones are a class of small molecules which enhance folding and prevent aggregation of proteins. Investigation of their effects on the processes of protein aggregation is of importance for further understanding of implication of protein aggregation in neurodegenerative diseases, as well as for solving biotechnological tasks. The effects of chemical chaperones trehalose and 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) on the kinetics of aggregation of UV-irradiated muscle glycogen phosphorylase b (UV-Phb) at 37 °C have been studied.

View Article and Find Full Text PDF

Many functions of phosphorylase kinase (PhK) are regulated by Ca and Mg ions. Ca and Mg ions stimulate activity of PhK, induce the changes in the tertiary and quaternary structure of the hexadecameric enzyme molecule, provoke association/aggregation of PhK molecules, enhance PhK binding to glycogen. To establish the kinetic regime of Ca and Mg-induced aggregation of PhK from rabbit skeletal muscles at 40 °C, in the present work the kinetics of aggregation was studied at various protein concentrations using the dynamic light scattering.

View Article and Find Full Text PDF

Small heat shock proteins (sHsps) are molecular chaperones preventing protein aggregation. Dynamics of quaternary structure plays an important role in the chaperone-like activity of sHsps. However, an interrelation between the oligomeric state and chaperone-like activity of sHsps remains insufficiently characterized.

View Article and Find Full Text PDF

In this work the effect of ionic strength and arginine on the kinetics of aggregation of UV-irradiated muscle glycogen phosphorylase b (UV-Phb) was studied using dynamic light scattering at 37 °C at various ionic strengths (0.02-0.7 M).

View Article and Find Full Text PDF

α-Crystallin is the major eye lens protein that has been shown to support lens transparency by preventing the aggregation of lens proteins. The 3D structure of α-crystallin is largely unknown. Electron microscopy, single-particle 3D reconstruction, size exclusion chromatography, dynamic light scattering, and analytical ultracentrifugation were used to study the structure of the native α-crystallin.

View Article and Find Full Text PDF

Different test systems are used to characterize the anti-aggregation efficiency of molecular chaperone proteins and of low-molecular-weight chemical chaperones. Test systems based on aggregation of UV-irradiated protein are of special interest because they allow studying the protective action of different agents at physiological temperatures. The kinetics of UV-irradiated glycogen phosphorylase b (UV-Phb) from rabbit skeletal muscle was studied at 37°C using dynamic light scattering in a wide range of protein concentrations.

View Article and Find Full Text PDF

To characterize the initial stages of protein aggregation, the kinetics of aggregation of UV-irradiated glycogen phosphorylase b (UV-Phb) was studied under conditions when the aggregation proceeded at a low rate (10°C, 0.03M Hepes buffer, pH6.8, containing 0.

View Article and Find Full Text PDF

Protein stability is a fundamental characteristic essential for understanding conformational transformations of the proteins in the cell. When using protein preparations in biotechnology and biomedicine, the problem of protein stability is of great importance. The kinetics of denaturation of oligomeric proteins may have characteristic properties determined by the quaternary structure.

View Article and Find Full Text PDF

To characterize the role of pyridoxal 5'-phosphate in stabilization of the conformation of muscle glycogen phosphorylase b (Phb), the mechanism of thermal aggregation for holo- and apoforms of Phb has been studied using dynamic light scattering. The order of aggregation with respect to the protein (n) for aggregation of holoPhb at 48°C is equal to 0.5 suggesting that the dissociative mechanism of denaturation is operative and denaturation is followed by rapid aggregation stage.

View Article and Find Full Text PDF

It is becoming evident that small heat shock proteins (sHsps) are important players of protein homeostasis system. Their ability to bind misfolded proteins may play a crucial role in preventing protein aggregation in cells. The remarkable structural plasticity of sHsps is considered to underlie the mechanism of their activity.

View Article and Find Full Text PDF

Thermal aggregation of bovine serum albumin (BSA) has been studied using dynamic light scattering, asymmetric flow field-flow fractionation and analytical ultracentrifugation. The studies were carried out at fixed temperatures (60°C, 65°C, 70°C and 80°C) in 0.1 M phosphate buffer, pH 7.

View Article and Find Full Text PDF

It is believed that the initial stages of protein aggregation are reversible and can be reversed by simple dilution, whereas prolonged exposure to factors responsible for denaturing proteins (for example, to elevated temperatures) results in the formation of irreversible aggregates. A new approach has been developed to discriminate the stage of the formation of reversible aggregates. Aggregation of UV-irradiated glycogen phosphorylase b (UV-Phb) was studied at 10, 25 and 37 °C in the presence of crowders (polyethylene glycol and Ficoll-70) using dynamic light scattering and analytical ultracentrifugation (pH 6.

View Article and Find Full Text PDF