Obtaining gold nanorods (AuNRs) through biosynthesis is an alternative that replaces the traditional use of ascorbic acid with chemical compounds such as polyphenols, owing to their notable antioxidant properties. Therefore, we developed an AuNR biosynthesis method using an aqueous extract of sour guava (Psidium araca). Initially, a study was conducted to determine the antioxidant capacity of different parts of the fruit (pulp and peel) over 14 days.
View Article and Find Full Text PDFB cells are pivotal in systemic lupus erythematosus and autoimmune disease pathogenesis. To address this, Nile Red-labeled polylactic acid nanoparticles (NR-PLA NPs) loaded with the JAK inhibitor baricitinib (BARI), specifically targeting JAK1 and JAK2 in B cells, were developed. Physicochemical characterization confirmed NP stability over 30 days.
View Article and Find Full Text PDFComposite polymeric membranes were designed based on sulfonated poly(ether ether sulfone) (sPEES) and mesostructured cellular foam (MCF) silica nanoparticles functionalized with organic compounds. Parameters such as molecular weight (MW) of the polymer, nature of the functional group of the MCF silica, and percentage of silica charge were evaluated on the final properties of the membranes. Composite membrane characterization was carried out on their water retention capacity (high MW polymer between 20-46% and for the low MW between 20-60%), ion exchange capacity (IEC) (high MW polymer between 0.
View Article and Find Full Text PDFInt J Biol Macromol
December 2020
Controlled release nanocarriers systems are promising for the administration of epigallocatechin-3-gallate (EGCG) in the treatment and prevention of several diseases. Therefore, the stability and therapeutic effects of EGCG must be enhanced from an encapsulation strategy. Thus, this research aims to explore a method to prepare EGCG nanocarriers based on coordination complexes from Fe (III) ions and blends of modified chitosan (Ch) with polyethylene glycol (PEG) and folic acid (F).
View Article and Find Full Text PDFIn this paper, we report the synthesis of polycaprolactone (PCL) based hybrid materials containing hydrophilic domains composed of N-vinylpyrrolidone (VP), and γ-methacryloxypropyltrimethoxysilane (MPS). The hybrid materials were obtained by RAFT copolymerization of N-vinylpyrrolidone and MPS using a pre-formed dixanthate-end-functionalized PCL as macro-chain transfer agent, followed by a post-reaction crosslinking step. The composition of the samples was determined by elemental and thermogravimetric analyses.
View Article and Find Full Text PDF