Toxin-antitoxin (TA) systems have been reported in the genomes of most bacterial species, and their role when located on the chromosome is still debated. TA systems are particularly abundant in the massive cassette arrays associated with chromosomal superintegrons (SI). Here, we describe the characterization of two superintegron cassettes encoding putative TA systems.
View Article and Find Full Text PDFType II toxin-antitoxin (TA) systems are considered as protein pairs in which a specific toxin is associated with a specific antitoxin. We have identified a novel antitoxin family (paaA) that is associated with parE toxins. The paaA-parE gene pairs form an operon with a third component (paaR) encoding a transcriptional regulator.
View Article and Find Full Text PDFThe origin and the evolution of toxin-antitoxin (TA) systems remain to be uncovered. TA systems are abundant in bacterial chromosomes and are thought to be part of the flexible genome that originates from horizontal gene transfer. To gain insight into TA system evolution, we analyzed the distribution of the chromosomally encoded ccdO157 system in 395 natural isolates of Escherichia coli.
View Article and Find Full Text PDFToxin-antitoxin (TA) systems are widespread among bacterial chromosomes and mobile genetic elements. Although in plasmids TA systems have a clear role in their vertical inheritance by selectively killing plasmid-free daughter cells (postsegregational killing or addiction phenomenon), the physiological role of chromosomally encoded ones remains under debate. The assumption that chromosomally encoded TA systems are part of stress response networks and/or programmed cell death machinery has been called into question recently by the observation that none of the five canonical chromosomally encoded TA systems in the Escherichia coli chromosome seem to confer any selective advantage under stressful conditions (V.
View Article and Find Full Text PDFThe Escherichia coli K-12 chromosome encodes at least five proteic toxin-antitoxin (TA) systems. The mazEF and relBE systems have been extensively characterized and were proposed to be general stress response modules. On one hand, mazEF was proposed to act as a programmed cell death system that is triggered by a variety of stresses.
View Article and Find Full Text PDFActa Crystallogr Sect F Struct Biol Cryst Commun
April 2007
The ccd toxin-antitoxin module from the Escherichia coli F plasmid has a homologue on the Vibrio fischeri integron. The homologue of the toxin (CcdB(Vfi)) was crystallized in two different crystal forms. The first form belongs to space group I23 or I2(1)3, with unit-cell parameter a = 84.
View Article and Find Full Text PDFToxin-antitoxin (TA) systems are widely represented on mobile genetic elements as well as in bacterial chromosomes. TA systems encode a toxin and an antitoxin neutralizing it. We have characterized a homolog of the ccd TA system of the F plasmid (ccd(F)) located in the chromosomal backbone of the pathogenic O157:H7 Escherichia coli strain (ccd(O157)).
View Article and Find Full Text PDFToxin-antitoxin systems are highly abundant in plasmids and bacterial chromosomes. They ensure plasmid maintenance by killing bacteria that have lost the plasmid. Their expression is autoregulated at the level of transcription.
View Article and Find Full Text PDFIn Escherichia coli, the Lon ATP-dependent protease is responsible for degradation of several regulatory proteins and for the elimination of abnormal proteins. Previous studies have shown that the overproduction of Lon is lethal. Here, we showed that Lon overproduction specifically inhibits translation through at least two different pathways.
View Article and Find Full Text PDFThe nucleotide sequencing of replicons isolated from three new broad host range plasmids, pMOL98, pEMT8, and pEMT3, originating from polluted soils, showed a typical organization of iteron replicons replicating by the theta mode. In the pMOL98 replicon, the origin region and the rep gene were identified in complementation experiments. Sequence comparisons showed that the regions bearing these features are highly identical to regions in pIP02T and pSB102 and that the Rep proteins (but not the origin regions) of these three plasmids show some identity to the Rep proteins of the IncW group of plasmids.
View Article and Find Full Text PDF