Publications by authors named "Natacha Cerisier"

Drug-induced liver injury (DILI) is a significant concern in drug development, often leading to drug withdrawal. Although many studies aim to identify biomarkers and gene/pathway signatures related to liver toxicity and aim to predict DILI compounds, this remains a challenge in drug discovery. With a strong development of high-content screening/imaging (HCS/HCI) for phenotypic screening, we explored the morphological cell perturbations induced by DILI compounds.

View Article and Find Full Text PDF

Network-based methods are promising approaches in systems toxicology because they can be used to predict the effects of drugs and chemicals on health, to elucidate the mode of action of compounds, and to identify biomarkers of toxicity. Over the years, the network biology community has developed a wide range of methods, and users are faced with the task of choosing the most appropriate method for their own application. Furthermore, the advantages and limitations of each method are difficult to determine without a proper standard and comparative evaluation of their performance.

View Article and Find Full Text PDF

The progress in image-based high-content screening technology has facilitated high-throughput phenotypic profiling notably the quantification of cell morphology perturbation by chemicals. However, understanding the mechanism of action of a chemical and linking it to cell morphology and phenotypes remains a challenge in drug discovery. In this study, we intended to integrate molecules that induced transcriptomic perturbations and cellular morphological changes into a biological network in order to assess chemical-phenotypic relationships in humans.

View Article and Find Full Text PDF

With the development of advanced technologies in cell-based phenotypic screening, phenotypic drug discovery (PDD) strategies have re-emerged as promising approaches in the identification and development of novel and safe drugs. However, phenotypic screening does not rely on knowledge of specific drug targets and needs to be combined with chemical biology approaches to identify therapeutic targets and mechanisms of actions induced by drugs and associated with an observable phenotype. In this study, we developed a system pharmacology network integrating drug-target-pathway-disease relationships as well as morphological profile from an existing high content imaging-based high-throughput phenotypic profiling assay known as "Cell Painting".

View Article and Find Full Text PDF

Adverse drug reactions (ADRs) are of major concern in drug safety. However, due to the biological complexity of human systems, understanding the underlying mechanisms involved in development of ADRs remains a challenging task. Here, we applied network sciences to analyze a tripartite network between 1000 drugs, 1407 targets, and 6164 ADRs.

View Article and Find Full Text PDF

Background: Drug resistance is a severe problem in HIV treatment. HIV protease is a common target for the design of new drugs for treating HIV infection. Previous studies have shown that the crystallographic structures of the HIV-2 protease (PR2) in bound and unbound forms exhibit structural asymmetry that is important for ligand recognition and binding.

View Article and Find Full Text PDF

The literature focuses on drug promiscuity, which is a drug's ability to bind to several targets, because it plays an essential role in polypharmacology. However, little work has been completed regarding binding site promiscuity, even though its properties are now recognized among the key factors that impact drug promiscuity. Here, we quantified and characterized the promiscuity of druggable binding sites from protein-ligand complexes in the high quality Mother Of All Databases while using statistical methods.

View Article and Find Full Text PDF

While recent literature focuses on drug promiscuity, the characterization of promiscuous binding sites (ability to bind several ligands) remains to be explored. Here, we present a proteochemometric modeling approach to analyze diverse ligands and corresponding multiple binding sub-pockets associated with one promiscuous binding site to characterize protein-ligand recognition. We analyze both geometrical and physicochemical profile correspondences.

View Article and Find Full Text PDF

We analyzed 78 binding pockets of the human urokinase plasminogen activator (uPA) catalytic domain extracted from a data set of crystallized uPA-ligand complexes. These binding pockets were computed with an original geometric method that does NOT involve any arbitrary parameter, such as cutoff distances, angles, and so on. We measured the deviation from convexity of each pocket shape with the pocket convexity index (PCI).

View Article and Find Full Text PDF