Publications by authors named "Nasserdine Papa Mze"

Djibouti is confronted with malaria resurgence, with malaria having been occurring in epidemic proportions since a decade ago. The current epidemiology of drug-resistant is not well known. Molecular markers were analyzed by targeted sequencing in 79 clinical isolates collected in Djibouti city in 2023 using the Miseq Illumina platform newly installed in the country.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the genomic variations of SARS-CoV-2 in Mauritania between September and November 2021, filling a gap in understanding the virus's mutations in this region.
  • A total of 54 clinical isolates were sequenced, with the Delta variant being the most common, particularly the sub-lineage AY.34.
  • It highlights the need for better regional sequencing facilities in West Africa to monitor viral mutations and address potential impacts on vaccine effectiveness and disease severity.
View Article and Find Full Text PDF

Genotypic testing is often recommended to improve the management of patients infected with human immunodeficiency virus (HIV). To help combat this major pandemic, next-generation sequencing (NGS) techniques are widely used to analyse resistance to antiretroviral drugs. In this study, we used a Vela Sentosa kit (Vela Diagnostics, Kendall, Singapore), which is usually used for the Ion Torrent personal genome machine (PGM) platform, to sequence HIV using the Illumina Miseq platform.

View Article and Find Full Text PDF

Antimalarial drug resistance has become a real public health problem despite WHO measures. New sequencing technologies make it possible to investigate genomic variations associated with resistant phenotypes at the genome-wide scale. Based on the use of hemisynthetic nanopores, the PromethION technology from Oxford Nanopore Technologies can produce long-read sequences, in contrast to previous short-read technologies used as the gold standard to sequence Plasmodium.

View Article and Find Full Text PDF

Until 2020, Djiboutian health authorities relied on histidine-rich protein-2 (HRP2)-based rapid diagnostic tests (RDTs) to establish the diagnosis of . The rapid spread of histidine-rich protein-2 and -3 () gene-deleted parasite strains in Djibouti has led the authorities to switch from HRP2-based RDTs to lactate dehydrogenase (LDH)-based RDTs targeting the plasmodial lactate dehydrogenase (pLDH) specific for and (RapiGEN BIOCREDIT Malaria Ag Pf/Pv pLDH/pLDH) in 2021. This study was conducted with the primary objective of evaluating the diagnostic performance of this alternative RDT.

View Article and Find Full Text PDF

Background: The Republic of Djibouti is a malaria endemic country that was in pre-elimination phase in 2006-2012. From 2013, however, malaria has re-emerged in the country, and its prevalence has been increasing every year. Given the co-circulation of several infectious agents in the country, the assessment of malaria infection based on microscopy or histidine-rich protein 2 (HRP2)-based rapid diagnostic tests (RDT) has shown its limitations.

View Article and Find Full Text PDF

The emergence of the Coronavirus Disease 2019 (COVID-19) pandemic has fostered the use of high-throughput techniques to sequence the entire severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genome and track its evolution. The present study proposes a rapid and relatively less expensive sequencing protocol for 384 samples by adapting the use of an Illumina NovaSeq library to an Illumina MiSeq flow cell instrument. The SARS-CoV-2 genome sequences obtained with Illumina NovaSeq and those obtained using MiSeq instruments were compared with the objective to validate the new, modified protocol.

View Article and Find Full Text PDF

In the present study, we propose a high-throughput sequencing protocol using aNextera XT Library DNA kit on an Illumina MiSeq instrument. We made major modifications to this library preparation in order to multiplex 384 samples in a single Illumina flow cell. To validate our protocol, we compared the sequences obtained with the modified Illumina protocol to those obtained with the GridION Nanopore protocol.

View Article and Find Full Text PDF

malaria is endemic in Mauritania. Individuals with glucose-6-phosphate dehydrogenase (G6PD) deficiency may develop acute hemolytic anemia when exposed to 8-aminoquinoline antimalarial drugs, which are indispensable for a complete cure. The prevalence of allelic variants was assessed in different ethno-linguistic groups present in Mauritania.

View Article and Find Full Text PDF

Background: Despite several control interventions resulting in a considerable decrease in malaria prevalence in the Union of the Comoros, the disease remains a public health problem with high transmission in Grande Comore compared to neighbouring islands. In this country, only a few studies investigating the genetic diversity of Plasmodium falciparum have been performed so far. For this reason, this study aims to examine the genetic diversity of P.

View Article and Find Full Text PDF

Background: Plasmodium falciparum malaria is endemic in the southern sahelian zone of Mauritania where intense internal and trans-border human and livestock movement occurs. The risk of importation and spread of drug-resistant parasites need to be regularly assessed in this region. The objective of the study was to assess the recent malaria situation near the Mauritania-Mali border.

View Article and Find Full Text PDF

Background: The Plasmodium falciparum reticulocyte binding protein homolog 2b (PfRh2b) is an important P. falciparum merozoite ligand that mediates invasion of erythrocytes by interacting with a chymotrypsin-sensitive "receptor Z". A large deletion polymorphism is found in the c-terminal ectodomain of this protein in many countries around the world, resulting in a truncated, but expressed protein.

View Article and Find Full Text PDF
Article Synopsis
  • The study addresses the urgent need for effective tools to detect drug resistance in malaria, focusing on two regions with different malaria prevalence: Tanzania (high endemicity) and Sénégal (low endemicity).
  • Researchers collected blood samples from malaria patients in both countries, employing two molecular techniques—high-resolution melting (HRM) and PCR-RFLP—to analyze drug resistance markers (DHFR and DHPS).
  • Findings revealed a high prevalence of mutant DHFR alleles in both populations, with HRM outperforming PCR-RFLP in detecting mixed infections, particularly in Senegal, where certain mutations were more common than in Tanzania.
View Article and Find Full Text PDF

In the Union of Comoros, interventions for combating malaria have contributed to a spectacular decrease in the prevalence of the disease. We studied the current distribution of Plasmodium species on the island of Grande Comore using nested PCR. The rapid diagnostic tests (RDTs) currently used in the Comoros are able to identify Plasmodium falciparum but no other Plasmodium species.

View Article and Find Full Text PDF

Background: The World Health Organization has recommended rapid diagnostic tests (RDTs) for use in the diagnosis of suspected malaria cases. In addition to providing quick and accurate detection of Plasmodium parasite proteins in the blood, these tests can be used as sources of DNA for further genetic studies. As sulfadoxine-pyrimethamine is used currently for intermittent presumptive treatment of pregnant women in both Senegal and in the Comoros Islands, resistance mutations in the dhfr and dhps genes were investigated using DNA extracted from RDTs.

View Article and Find Full Text PDF