In this paper, we examine how surface runoff affects public safety and urban infrastructure worldwide and how human activity has significantly altered the frequency and magnitude of these events. We investigate this issue in Ferson Creek, IL, USA. Our study focuses on three specific areas of impact: (1) the primary reasons for a considerable increase in average runoff peaks, using annual maximum runoff discharge and annual maximum precipitation and temperature to evaluate the role of climate variability; (2) the effect of land use change on runoff peaks by coupling dominant land use categories with annual maximum runoff discharge; and (3) the use of return level plots as a reference to explore the watershed's sensitivity to land use change.
View Article and Find Full Text PDFThe present study employed an anoxic packed bed biofilm reactor (AnPBR) inoculated with in-situ biosurfactant-producing bacteria for the biodegradation of petroleum wastewater. Highly acclimated biomass decreased the start-up phase period and with increasing the initial total petroleum hydrocarbon (TPH) concentration from 1.5 to 4 g/L was accompanied by TPH and chemical oxygen demand (COD) removal efficiencies of above 99% and 96%, respectively.
View Article and Find Full Text PDFIn the present paper, a scenario-based many-objective optimization model is developed for the spatio-temporal optimal design of reservoir water quality monitoring systems considering uncertainties. The proposed methodology is based on the concept of nonlinear interval number programming and information theory, while handling uncertainties of temperature, reservoir inflow, and inflow constituent concentration. A reference-point-based non-dominated sorting genetic algorithm (NSGA-III) is used to deal with the many-objective optimization problem.
View Article and Find Full Text PDFDifferent biochars produced by the impregnation of Mg, Ca, Al, Cu, and Fe were compared for the phosphate (P) uptake capacity and the effect on solution pH. Among them, Ca- and Mg-rich biochars demonstrate better sorption ability to P and have less effect on pH change. The optimum conditions of the pyrolysis processes were determined using response surface methodology.
View Article and Find Full Text PDFJ Environ Health Sci Eng
August 2016
Background: Extensive human activities and unplanned land uses have put groundwater resources of Shiraz plain at a high risk of nitrate pollution, causing several environmental and human health issues. To address these issues, water resources managers utilize groundwater vulnerability assessment and determination of protection. This study aimed to prepare the vulnerability maps of Shiraz aquifer by using Composite DRASTIC index, Nitrate Vulnerability index, and artificial neural network and also to compare their efficiency.
View Article and Find Full Text PDF