Long-range target detection in thermal infrared imagery is a challenging research problem due to the low resolution and limited detail captured by thermal sensors. The limited size and variability in thermal image datasets for small target detection is also a major constraint for the development of accurate and robust detection algorithms. To address both the sensor and data constraints, we propose a novel convolutional neural network (CNN) feature extraction architecture designed for small object detection in data-limited settings.
View Article and Find Full Text PDFOptical coherence tomography (OCT) has been identified as a non-invasive and inexpensive imaging modality to discover potential biomarkers for Alzheimer's diagnosis and progress determination. Current hypotheses presume the thickness of the retinal layers, which are analyzable within OCT scans, as an effective biomarker for the presence of Alzheimer's. As a logical first step, this work concentrates on the accurate segmentation of retinal layers to isolate the layers for further analysis.
View Article and Find Full Text PDFIn this paper, we propose a novel deep sparse coding network (SCN) capable of efficiently adapting its own regularization parameters for a given application. The network is trained end-to-end with a supervised task-driven learning algorithm via error backpropagation. During training, the network learns both the dictionaries and the regularization parameters of each sparse coding layer so that the reconstructive dictionaries are smoothly transformed into increasingly discriminative representations.
View Article and Find Full Text PDFIEEE Trans Image Process
November 2018
Domain adaptation is a promising technique when addressing limited or no labeled target data by borrowing well-labeled knowledge from the auxiliary source data. Recently, researchers have exploited multi-layer structures for discriminative feature learning to reduce the domain discrepancy. However, there are limited research efforts on simultaneously building a deep structure and a discriminative classifier over both labeled source and unlabeled target.
View Article and Find Full Text PDFIEEE Trans Image Process
January 2016
Dictionary learning algorithms have been successfully used for both reconstructive and discriminative tasks, where an input signal is represented with a sparse linear combination of dictionary atoms. While these methods are mostly developed for single-modality scenarios, recent studies have demonstrated the advantages of feature-level fusion based on the joint sparse representation of the multimodal inputs. In this paper, we propose a multimodal task-driven dictionary learning algorithm under the joint sparsity constraint (prior) to enforce collaborations among multiple homogeneous/heterogeneous sources of information.
View Article and Find Full Text PDFIEEE Trans Cybern
March 2015
Advances in acoustic sensing have enabled the simultaneous acquisition of multiple measurements of the same physical event via co-located acoustic sensors. We exploit the inherent correlation among such multiple measurements for acoustic signal classification, to identify the launch/impact of munition (i.e.
View Article and Find Full Text PDFIEEE Trans Pattern Anal Mach Intell
January 2014
Traditional biometric recognition systems rely on a single biometric signature for authentication. While the advantage of using multiple sources of information for establishing the identity has been widely recognized, computational models for multimodal biometrics recognition have only recently received attention. We propose a multimodal sparse representation method, which represents the test data by a sparse linear combination of training data, while constraining the observations from different modalities of the test subject to share their sparse representations.
View Article and Find Full Text PDFIEEE Trans Image Process
December 2013
In this paper, we present dictionary learning methods for sparse signal representations in a high dimensional feature space. Using the kernel method, we describe how the well known dictionary learning approaches, such as the method of optimal directions and KSVD, can be made nonlinear. We analyze their kernel constructions and demonstrate their effectiveness through several experiments on classification problems.
View Article and Find Full Text PDFIEEE Trans Syst Man Cybern B Cybern
December 2012
This paper investigates the joint-structured-sparsity-based methods for transient acoustic signal classification with multiple measurements. By joint structured sparsity, we not only use the sparsity prior for each measurement but we also exploit the structural information across the sparse representation vectors of multiple measurements. Several different sparse prior models are investigated in this paper to exploit the correlations among the multiple measurements with the notion of the joint structured sparsity for improving the classification accuracy.
View Article and Find Full Text PDFThis paper describes a new kernel wavelet-based anomaly detection technique for long-wave (LW) forward-looking infrared imagery. The proposed approach called kernel wavelet-Reed-Xiaoli (wavelet-RX) algorithm is essentially an extension of the wavelet-RX algorithm (combination of wavelet transform and RX anomaly detector) to a high-dimensional feature space (possibly infinite) via a certain nonlinear mapping function of the input data. The wavelet-RX algorithm in this high-dimensional feature space can easily be implemented in terms of kernels that implicitly compute dot products in the feature space (kernelizing the wavelet-RX algorithm).
View Article and Find Full Text PDFWe present an automatic target recognition algorithm using the recently developed theory of sparse representations and compressive sensing. We show how sparsity can be helpful for efficient utilization of data for target recognition. We verify the efficacy of the proposed algorithm in terms of the recognition rate and confusion matrices on the well known Comanche (Boeing-Sikorsky, USA) forward-looking IR data set consisting of ten different military targets at different orientations.
View Article and Find Full Text PDFThis paper describes a new wavelet-based anomaly detection technique for a dual-band forward-looking infrared (FLIR) sensor consisting of a coregistered longwave (LW) with a midwave (MW) sensor. The proposed approach, called the wavelet-RX (Reed-Xiaoli) algorithm, consists of a combination of a two-dimensional (2D) wavelet transform and a well-known multivariate anomaly detector called the RX algorithm. In our wavelet-RX algorithm, a 2D wavelet transform is first applied to decompose the input image into uniform subbands.
View Article and Find Full Text PDFIEEE Trans Pattern Anal Mach Intell
February 2006
In this paper, we present a kernel realization of a matched subspace detector (MSD) that is based on a subspace mixture model defined in a high-dimensional feature space associated with a kernel function. The linear subspace mixture model for the MSD is first reformulated in a high-dimensional feature space and then the corresponding expression for the generalized likelihood ratio test (GLRT) is obtained for this model. The subspace mixture model in the feature space and its corresponding GLRT expression are equivalent to a nonlinear subspace mixture model with a corresponding nonlinear GLRT expression in the original input space.
View Article and Find Full Text PDFIEEE Trans Syst Man Cybern B Cybern
August 2005
Many image recognition algorithms based on data-learning perform dimensionality reduction before the actual learning and classification because the high dimensionality of raw imagery would require enormous training sets to achieve satisfactory performance. A potential problem with this approach is that most dimensionality reduction techniques, such as principal component analysis (PCA), seek to maximize the representation of data variation into a small number of PCA components, without considering interclass discriminability. This paper presents a neural-network-based transformation that simultaneously seeks to provide dimensionality reduction and a high degree of discriminability by combining together the learning mechanism of a neural-network-based PCA and a backpropagation learning algorithm.
View Article and Find Full Text PDF