Publications by authors named "Nasrin Mesaeli"

Spatial mapping of heterogeneity in gene expression in cancer tissues can improve our understanding of cancers and help in the rapid detection of cancers with high accuracy and reliability. Significant advancements have been made in recent years in OMICS technologies, which possess the strong potential to be applied in the spatial mapping of biopsy tissue samples and their molecular profiling to a single-cell level. The clinical application of OMICS technologies in spatial profiling of cancer tissues is also advancing.

View Article and Find Full Text PDF

Calreticulin an endoplasmic reticulum (ER) chaperone that is involved in the quality control process and plays an important role as a regulator of intracellular calcium homeostasis. Previously, we illustrated that loss of calreticulin (crt-/-) results in the activation of ubiquitin-proteasome pathway facilitating the increased resistance to apoptosis. Our preliminary data illustrated a significant increase in the endocytosis in the calreticulin knockout mouse embryonic fibroblast cells (crt-/-).

View Article and Find Full Text PDF

Stroke is the main cause of adult disability in the world, leaving more than half of the patients dependent on daily assistance. Understanding the post-stroke biochemical and molecular changes are critical for patient survival and stroke management. The aim of this work was to investigate the photo-thrombotic ischemic stroke in male rats with particular focus on biochemical and elemental changes in the primary stroke lesion in the somatosensory cortex and surrounding areas, including the corpus callosum.

View Article and Find Full Text PDF

The expansion of fat mass in the obese state is due to increased adipocyte hypertrophy and hyperplasia. The molecular mechanism that drives adipocyte hyperplasia remains unknown. The NAD(+)-dependent protein deacetylase sirtuin 1 (SIRT1), a key regulator of mammalian metabolism, maintains proper metabolic functions in many tissues, counteracting obesity.

View Article and Find Full Text PDF

Transcription factor NFκB is activated by several processes including inflammation, endoplasmic-reticulum (ER) stress, increase in Akt signaling and enhanced proteasomal degradation. Calreticulin (CRT) is an ER Ca(2+)-binding chaperone that regulates many cellular processes. Gene-targeted deletion of CRT has been shown to induce ER stress that is accompanied with a significant increase in the proteasome activity.

View Article and Find Full Text PDF

Although the modulation of ion channel gating by hormones and drugs has been extensively studied, much less is known about how cell surface ion channel expression levels are regulated. Here, we demonstrate that the cell surface density of both the heterologously expressed K+ channel encoded by the human ether-a-go-go-related gene (HERG) and its native counterpart, the rapidly activating delayed rectifier K+ channel (IKr), in rabbit hearts in vivo is precisely controlled by extracellular K+ concentration ([K+]o) within a physiologically relevant range. Reduction of [K+]o led to accelerated internalization and degradation of HERG channels within hours.

View Article and Find Full Text PDF

Defects in insulin signalling and glucose metabolism are associated with the development of diabetes. Insulin signalling is initiated by the binding of insulin to its receptor and triggering cascades of events including activation of PI3kinase/Akt signalling pathway. Calreticulin (CRT) is a calcium binding chaperone molecule located in the endoplasmic reticulum.

View Article and Find Full Text PDF

Calreticulin is a lectin chaperone essential for intracellular calcium homeostasis. Deletion of calreticulin gene compromises the overall quality control within the endoplasmic reticulum (ER) leading to activation of the unfolded protein response. However, the ER structure of calreticulin deficient cells (crt-/-) is not altered due to accumulation of misfolded proteins.

View Article and Find Full Text PDF

Calreticulin is an endoplasmic reticulum protein important in cardiovascular development. Deletion of the calreticulin gene leads to defects in the heart and the formation of omphaloceal. These defects could both be due to changes in the extracellular matrix composition.

View Article and Find Full Text PDF

In this study, we examined changes in the biochemical and inotropic events of the alpha(1)-adrenoceptor signaling pathway in hypothyroid rat hearts. Hypothyroidism was induced by treating experimental animals with 0.05% 6-n-propyl-2-thiouracil (PTU) in drinking water for 7 weeks.

View Article and Find Full Text PDF

The Na+/Ca2+ exchanger (NCX) NCX1 exhibits tissue-specific alternative splicing. Such NCX splice variants as NCX1.1 and NCX1.

View Article and Find Full Text PDF

The tumor suppressor protein, p53 is a transcription factor that not only activates expression of genes containing the p53 binding site but also can repress the expression of some genes lacking this binding site. Previous studies have shown that overexpression of wild-type p53 leads to apoptosis and cell cycle arrest. DNA damage, such as that caused by UV irradiation, results in p53 stabilization and nuclear localization that subsequently induces apoptosis.

View Article and Find Full Text PDF

Calnexin and calreticulin are molecular chaperones, which are involved in the protein folding, assembly, and retention/retrieval. We know that calreticulin-deficiency is lethal in utero, but do not understand the contribution of chaperone function to this phenotype. Here we studied protein folding and chaperone function of calnexin in the absence of calreticulin.

View Article and Find Full Text PDF