EuYbCdSb Zintl solid solutions have been prepared by tin flux reaction by employing the elements Eu/Yb/Cd/Sb/Sn in the ratio 11 - x:x:6:12:30, where x is an integer less than 11 representing the preparative amount of Eu (11 - x) and Yb (x). Efforts to make the Yb compositions for x exceeding ∼3 resulted in structures other than the SrCdSb structure type. The crystal structures and compositions were determined by single-crystal and powder X-ray diffraction and wavelength-dispersive X-ray analysis measurements.
View Article and Find Full Text PDFA novel Zintl phase structure type, Eu7Cd4Sb8-xAsx (x = 2, 3, 4, and 5), with the general formula Eu7Cd4Pn8 (Pn = mixed occupancy Sb and As), was synthesized by molten tin flux reaction. Its structure was determined using single-crystal X-ray diffraction methods. This structure type is only preserved for 2 ≤ x ≤ 5 under our experimental conditions, and efforts to synthesize samples with x < 2 or x > 5 resulted in other structure types.
View Article and Find Full Text PDFThe synthesis, crystal structure, magnetic properties, and europium Mössbauer spectroscopy of the new members of the 9-4-9 Zintl family of Eu(9)Cd(4-x)CM(2+x-y)□(y)Sb(9) (CM = coinage metal: Au, Ag, and Cu) are reported. These compounds crystallize in the Ca(9)Mn(4)Bi(9) structure type (9-4-9) with the 4g interstitial site almost half-occupied by coinage metals; these are the first members in the 9-4-9 family where the interstitial positions are occupied by a monovalent metal. All previously known compounds with this structure type include divalent interstitials where these interstitials are typically the same as the transition metals in the anionic framework.
View Article and Find Full Text PDFCreating allotropes and polymorphs of nanoparticles (NPs) has gained tremendous momentum in recent times. Group 14 (C, Si, Ge) has a number of allotropes; some with significant applications. Here we report the synthesis of Si NPs crystallizing in the BC8 structure via a colloidal route for the first time.
View Article and Find Full Text PDFElectrophilic activation and subsequent reduction of substrates is in general not possible because highly Lewis acidic metals lack access to multiple redox states. Herein, we demonstrate that transition metal-like redox processes and electronic structure and magnetic properties can be imparted to aluminum(III). Bis(iminopyridine) complexes containing neutral, monoanionic, and dianionic iminopyridine ligands (IP) have been characterized structurally and electronically; yellow (IP)AlCl(3) (1), deep green (IP(-))(2)AlCl (2) and (IP(-))(2)Al(CF(3)SO(3)) (3), and deep purple [(IP(2-))Al](-) (5) are presented.
View Article and Find Full Text PDF