In the present work, nanostructured graphene nanosheets were added to hybrid silica sols and deposited on aluminium alloy A2024-T3 to study the effect on the corrosion behaviour. Sols were prepared using tetraethyl-orthosilicate (TEOS), 3-glycidoxypropyl-trimethoxysilane (GPTMS) and a colloidal silica suspension (LUDOX) as silica precursors with adding chemically modified graphene nanosheets (GN-chem). The graphene nanosheets were modified through a straightforward and simple hydrothermal approach and then, dispersed into a silica sol (SiO/GN-chem).
View Article and Find Full Text PDFThanks to their highly tunable band gaps, graphene nanoribbons (GNRs) with atomically precise edges are emerging as mechanically and chemically robust candidates for nanoscale light emitting devices of modulable emission color. While their optical properties have been addressed theoretically in depth, only few experimental studies exist, limited to ensemble measurements and without any attempt to integrate them in an electronic-like circuit. Here we report on the electroluminescence of individual GNRs suspended between the tip of a scanning tunneling microscope (STM) and a Au(111) substrate, constituting thus a realistic optoelectronic circuit.
View Article and Find Full Text PDF