Publications by authors named "Nasim Kheshtchin"

Objective: Asthma, a chronic inflammatory disease with diverse pathomechanisms, presents challenges in developing personalized diagnostic and therapeutic approaches. This review aims to provide a comprehensive overview of the role of exosomes, small extracellular vesicles, in asthma pathophysiology and explores their potential as diagnostic biomarkers and therapeutic tools.

Methods: A literature search was conducted to identify recent studies investigating the involvement of exosomes in asthma.

View Article and Find Full Text PDF

Cells tend to disintegrate themselves or are forced to undergo such destructive processes in critical circumstances. This complex cellular function necessitates various mechanisms and molecular pathways in order to be executed. The very nature of cell death is essentially important and vital for maintaining homeostasis, thus any type of disturbing occurrence might lead to different sorts of diseases and dysfunctions.

View Article and Find Full Text PDF

Background: Buerger's disease, also known as Thromboangiitis Obliterans (TAO), is a progressive, inflammatory vascular disease with unknown etiology.

Objective: To address the degree of T cell immunosenescence in this inflammatory disease, the frequency of senescent T cells expressing CD57 and/or CD153 (CD30L) in patients with TAO.

Methods: In this study, nine male cigarette smoker patients with TAO, nine male healthy cigarette smokers, and nine male healthy non-smoker blood donors were enrolled.

View Article and Find Full Text PDF

Allergic asthma is a respiratory disease initiated by type-2 immune responses characterized by secretion of alarmins, interleukin-4 (IL-4), IL-5, and IL-13, eosinophilic inflammation, and airway hyperresponsiveness (AHR). Immune checkpoints (ICPs) are inhibitory or stimulatory molecules expressed on different immune cells, tumor cells, or other cell types that regulate immune system activation and maintain immune homeostasis. Compelling evidence indicates a key role for ICPs in both the progression and prevention of asthma.

View Article and Find Full Text PDF
Article Synopsis
  • The study introduces an agent-based model (ABM) that simulates the interactions between melanoma tumor cells and the immune system, focusing on myeloid-derived suppressor cells (MDSCs) and dendritic cells (DCs).
  • Researchers conducted experiments on 68 mice with melanoma, dividing them into four treatment groups to analyze tumor growth and immune response.
  • The ABM successfully mimicked the interactions between tumor and immune cell components, suggesting it can be a valuable tool for exploring combination therapy effects and understanding key moments in tumor progression.
View Article and Find Full Text PDF

Background: Mathematical modeling offers the possibility to select the optimal dose of a drug or vaccine. Considerable evidence show that many bacterial components can activate dendritic cells (DCs). Our previous report showed that multiple doses of DCs matured with Listeria monocytogenes led to tumor regression whereas multiple doses of CpG-matured DCs affected tumor reversely.

View Article and Find Full Text PDF

Immunoediting is a well-known concept that occurs in cancer through three steps of elimination, equilibrium, and escape (3Es), where the immune system first suppresses the growth of tumor cells and then promotes them towards the malignancy. This phenomenon has been conceptualized in some chronic viral infections such as HTLV-1 and HIV by obtaining the resistance to elimination and making a persistent form of infected cells especially in untreated patients. Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a heterogeneous disease characterizing from mild/asymptomatic to severe/critical courses with some behavioral aspects in an immunoediting setting.

View Article and Find Full Text PDF

The development of new strategies of anticancer immunotherapies has provided promising approaches in the treatment of solid tumors. However, despite the improved survival in responders, most of the patients show incomplete responses with a lack of remarkable clinical improvement. Hypoxia has been identified as a common characteristic of solid tumors contributing to different aspects of tumor progression, including invasion, metastasis, and the creation of the immunosuppressive tumor microenvironment.

View Article and Find Full Text PDF

Previous studies have demonstrated that maturation of dendritic cells (DCs) by pathogenic components through pathogen-associated molecular patterns (PAMPs) such as Listeria monocytogenes lysate (LML) or CpG DNA can improve cancer vaccination in experimental models. In this study, a mathematical model based on an artificial neural network (ANN) was used to predict several patterns and dosage of matured DC administration for improved vaccination. The ANN model predicted that repeated co-injection of tumor antigen (TA)-loaded DCs matured with CpG (CpG-DC) and LML (List-DC) results in improved antitumor immune response as well as a reduction of immunosuppression in the tumor microenvironment.

View Article and Find Full Text PDF

Myeloid-derived suppressor cells (MDSCs) are capable of suppressing the immune response. 5-Fluorouracil (5-FU) compared to other chemotherapy drugs have shown considerable decreases in the number of MDSCs without visible effects on T, B and natural killer cells, as well as dendritic cells (DCs). DC-based vaccines considered to be appropriate candidates for cancer immunotherapy.

View Article and Find Full Text PDF

Dendritic cells are important in initiating immune responses; therefore, a range of dendritic cell-based approaches have been established to induce immune response against cancer cells. However, the presence of immunosuppressive mediators such as adenosine in the tumor microenvironment reduces the efficacy of dendritic cell-based cancer immunotherapy. In this study, we investigated whether blockade of the A2A adenosine receptor with a selective antagonist and a CD73 inhibitor may increase the efficacy of a dendritic cell-based cancer vaccine.

View Article and Find Full Text PDF

The efficacy of conventional anti-tumor immunotherapeutic approaches is markedly affected by the immunosuppressive microenvironment of tumor. Since adenosine is one of the main orchestra leaders in immunosuppression symphony of tumor, targeting its producing molecules such as CD73 can help to achieve a better clinical outcome following conventional cancer immunotherapeutic approaches. In the present study, we evaluated the efficacy of CD73-specific siRNA-loaded chitosan-lactate nanoparticles (ChLa NPs) in combination with tumor lysate pulsed dendritic cells (DCs) vaccine in treatment of 4T1 (murine derived) breast cancer bearing mice.

View Article and Find Full Text PDF

Considerable evidence shows that the tumor microenvironment is an active participant in preventing immunosurveillance and limiting the efficacy of anticancer therapies. Hypoxia is a prominent characteristic of the solid tumor microenvironment. The transcription factor hypoxia-inducible factor-1α (HIF-1α) is an important mediator of hypoxic response of tumor cells that modulates the expression of specific genes involved in tumor immunosuppression.

View Article and Find Full Text PDF

Introduction: The critical role of regulatory T (Treg) cells in dampening immune responses against tumor cells is apparent. Therefore, several methods have been introduced for eliminating Treg. Among them, inducing immune responses against Treg cells expressing Foxp3 transcription factor is a hopeful approach to decrease the frequency of Tregs.

View Article and Find Full Text PDF

The immunosuppressive factors in tumor microenvironment enhance tumor growth and suppress anti-tumor immune responses. Adenosine is an important immunosuppressive factor which can be secreted by both tumor and immune cells trough action of two cell surface ecto-nucleotidase molecules CD39 and CD73. Blocking the adenosine generating molecules has emerged as an effective immunotherapeutic approach for treatment of cancer.

View Article and Find Full Text PDF

Background: Low, noncytotoxic concentrations of various chemotherapeutic drugs like 5-fluorouracil (5-FU) induce antitumor immune responses by selectively depleting tumor-induced immunosuppressive cells, and could therefore be used in combination with dendritic cell (DC) vaccines in order to enhance their immunotherapeutic efficacy. However, the likely negative influences of low, noncytotoxic doses of 5-FU on bone marrow-derived (BM)-DCs in vitro have not yet been investigated.

Methods: The effects of low, noncytotoxic concentrations of 5-FU on mouse BM-DC differentiation and maturation markers (CD11c, MHC class II and CD80) as well as antigen-presenting capacity and cytokine production (IL-12p70 and IL-10) have been assessed.

View Article and Find Full Text PDF

Problem: Recurrent miscarriage (RM) is defined as three or more consecutive pregnancy losses prior to the 20th week of gestation. The aim of this study was to investigate the expression of T helper (Th)1- and Th2-related chemokine receptors on CD4(+) T helper and CD8(+) T cytotoxic (Tc) cells in RM and control subjects. The effects of lymphocyte immunotherapy on the balance of Th1/Th2 and Tc1/Tc2 chemokine receptors were further evaluated in RM women.

View Article and Find Full Text PDF